These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33490696)

  • 1. A simulation study for the treatment of Kuwait sour gas by membranes.
    Alqaheem Y
    Heliyon; 2021 Jan; 7(1):e05953. PubMed ID: 33490696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Optimal Zeolitic Sorbents for Sweetening of Highly Sour Natural Gas.
    Shah MS; Tsapatsis M; Siepmann JI
    Angew Chem Int Ed Engl; 2016 May; 55(20):5938-42. PubMed ID: 27087591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multistage Fluidized Bed for the Deep Removal of Sour Gases: Proof of Concept and Tray Efficiencies.
    Driessen RT; Bos MJ; Brilman DWF
    Ind Eng Chem Res; 2018 Mar; 57(11):3866-3875. PubMed ID: 29606794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly Engineered 6FDA-Based Polyimide Membranes for Sour Natural Gas Separation.
    Liu Z; Liu Y; Qiu W; Koros WJ
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14877-14883. PubMed ID: 32365260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study.
    Alqaheem Y; Alswaileh F
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33803031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation.
    Yi S; Ghanem B; Liu Y; Pinnau I; Koros WJ
    Sci Adv; 2019 May; 5(5):eaaw5459. PubMed ID: 31139751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams.
    Abdelnaby MM; Cordova KE; Abdulazeez I; Alloush AM; Al-Maythalony BA; Mankour Y; Alhooshani K; Saleh TA; Al Hamouz OCS
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47984-47992. PubMed ID: 32986948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High sour natural gas dehydration treatment through low temperature technique: Process simulation, modeling and optimization.
    Rubaiee S
    Chemosphere; 2023 Apr; 320():138076. PubMed ID: 36754305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation and Optimization of the Acid Gas Absorption Process by an Aqueous Diethanolamine Solution in a Natural Gas Sweetening Unit.
    Darani NS; Behbahani RM; Shahebrahimi Y; Asadi A; Mohammadi AH
    ACS Omega; 2021 May; 6(18):12072-12080. PubMed ID: 34056361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.
    Malykh OV; Golub AY; Teplyakov VV
    Adv Colloid Interface Sci; 2011 May; 164(1-2):89-99. PubMed ID: 21094931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective.
    Lambert TW; Goodwin VM; Stefani D; Strosher L
    Sci Total Environ; 2006 Aug; 367(1):1-22. PubMed ID: 16650463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of Methanol during Natural Gas Dehydration Using Polymeric Membranes: Modeling of the Process.
    Miroshnichenko D; Teplyakov V; Shalygin M
    Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.
    Makaruk A; Miltner M; Harasek M
    Water Sci Technol; 2013; 67(2):326-32. PubMed ID: 23168631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process Simulation and Cost Evaluation of Carbon Membranes for CO₂ Removal from High-Pressure Natural Gas.
    Chu Y; He X
    Membranes (Basel); 2018 Nov; 8(4):. PubMed ID: 30513586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-based technologies for biogas separations.
    Basu S; Khan AL; Cano-Odena A; Liu C; Vankelecom IF
    Chem Soc Rev; 2010 Feb; 39(2):750-68. PubMed ID: 20111791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postcombustion Carbon Capture Using Thin-Film Composite Membranes.
    Liu M; Nothling MD; Webley PA; Fu Q; Qiao GG
    Acc Chem Res; 2019 Jul; 52(7):1905-1914. PubMed ID: 31246007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene glycol elimination in amine loop for more efficient gas conditioning.
    Hajilary N; Rezakazemi M
    Chem Cent J; 2018 Nov; 12(1):120. PubMed ID: 30470938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions.
    de Rink R; Klok JBM; van Heeringen GJ; Keesman KJ; Janssen AJH; Ter Heijne A; Buisman CJN
    J Hazard Mater; 2020 Feb; 383():121104. PubMed ID: 31586887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.