These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33490763)

  • 1. Recent Trends in Electrode and Electrolyte Design for Aluminum Batteries.
    Das S; Manna SS; Pathak B
    ACS Omega; 2021 Jan; 6(2):1043-1053. PubMed ID: 33490763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview and Future Perspectives of Aluminum Batteries.
    Elia GA; Marquardt K; Hoeppner K; Fantini S; Lin R; Knipping E; Peters W; Drillet JF; Passerini S; Hahn R
    Adv Mater; 2016 Sep; 28(35):7564-79. PubMed ID: 27357902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Aluminum Solvation with Ionic Liquids for Improved Aqueous-Based Aluminum-Ion Batteries.
    Lahiri A; Guan S; Chutia A
    ACS Appl Energy Mater; 2023 Dec; 6(23):11874-11881. PubMed ID: 38098871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in aqueous aluminum-ion batteries.
    Wang B; Tang Y; Deng T; Zhu J; Sun B; Su Y; Ti R; Yang J; Wu W; Cheng N; Zhang C; Lu X; Xu Y; Liang J
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38848693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Intercalation of Multivalent Al
    Joseph J; Nerkar J; Tang C; Du A; O'Mullane AP; Ostrikov KK
    ChemSusChem; 2019 Aug; 12(16):3753-3760. PubMed ID: 31102343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook.
    Jia BE; Thang AQ; Yan C; Liu C; Lv C; Zhu Q; Xu J; Chen J; Pan H; Yan Q
    Small; 2022 Oct; 18(43):e2107773. PubMed ID: 35934834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
    Angell M; Pan CJ; Rong Y; Yuan C; Lin MC; Hwang BJ; Dai H
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):834-839. PubMed ID: 28096353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Active Sites of Polyaniline for AlCl
    Wang S; Huang S; Yao M; Zhang Y; Niu Z
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11800-11807. PubMed ID: 32301196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data.
    Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C
    Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tremella-like Vanadium Tetrasulfide as a High-Performance Cathode Material for Rechargeable Aluminum Batteries.
    Han X; Wu F; Zhao R; Bai Y; Wu C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6888-6901. PubMed ID: 36696545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rechargeable Aluminum Battery: Opportunities and Challenges.
    Yang H; Li H; Li J; Sun Z; He K; Cheng HM; Li F
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):11978-11996. PubMed ID: 30687993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries.
    Xiao P; Yun X; Chen Y; Guo X; Gao P; Zhou G; Zheng C
    Chem Soc Rev; 2023 Jul; 52(15):5255-5316. PubMed ID: 37462967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives.
    Zhang Y; Liu S; Ji Y; Ma J; Yu H
    Adv Mater; 2018 Sep; 30(38):e1706310. PubMed ID: 29920792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nb
    Li J; Zeng F; El-Demellawi JK; Lin Q; Xi S; Wu J; Tang J; Zhang X; Liu X; Tu S
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45254-45262. PubMed ID: 36166239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries.
    Du H; Wang Y; Kang Y; Zhao Y; Tian Y; Wang X; Tan Y; Liang Z; Wozny J; Li T; Ren D; Wang L; He X; Xiao P; Mao E; Tavajohi N; Kang F; Li B
    Adv Mater; 2024 Jul; 36(29):e2401482. PubMed ID: 38695389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.