These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3349087)

  • 1. Enzymatic synthesis of p-nitrophenyl N,N',N'',N'',N''''-pentaacetyl-beta-chitopentaoside in water-methanol system; significance as a substrate for lysozyme assay.
    Usui T; Hayashi Y; Nanjo F; Ishido Y
    Biochim Biophys Acta; 1988 Mar; 953(2):179-84. PubMed ID: 3349087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p-nitrophenyl penta-N-acetyl-beta-chitopentaoside as a novel synthetic substrate for the colorimetric assay of lysozyme.
    Nanjo F; Sakai K; Usui T
    J Biochem; 1988 Aug; 104(2):255-8. PubMed ID: 2972699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic synthesis of p-nitrophenyl 3(5)-O-beta-N-acetylglucosaminyl-alpha-maltopentaoside by lysozyme; a novel substrate for human amylase assay.
    Matsui H; Kawagishi H; Usui T
    Biochim Biophys Acta; 1990 Jul; 1035(1):90-6. PubMed ID: 1696503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitinase-catalyzed hydrolysis of 4-nitrophenyl penta-N-acetyl-β-chitopentaoside as determined by real-time ESIMS: the 4-nitrophenyl moiety of the substrate interacts with the enzyme binding site.
    Letzel T; Sahmel-Schneider E; Skriver K; Ohnuma T; Fukamizo T
    Carbohydr Res; 2011 May; 346(6):863-6. PubMed ID: 21397215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis of p-nitrophenyl alpha-maltopentaoside in an aqueous-methanol solvent system by maltotetraose-forming amylase: a substrate for human amylase in serum.
    Usui T; Murata T
    J Biochem; 1988 Jun; 103(6):969-72. PubMed ID: 2459114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difucosylation of chitooligosaccharides by eukaryote and prokaryote α1,6-fucosyltransferases.
    Ihara H; Hanashima S; Tsukamoto H; Yamaguchi Y; Taniguchi N; Ikeda Y
    Biochim Biophys Acta; 2013 Oct; 1830(10):4482-90. PubMed ID: 23688399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and enzymatic characterization of tobacco leaf β-N-acetylhexosaminidase.
    Ryšlavá H; Valenta R; Hýsková V; Křížek T; Liberda J; Coufal P
    Biochimie; 2014 Dec; 107 Pt B():263-9. PubMed ID: 25242193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure and activity of mouse lysozyme M.
    Obita T; Ueda T; Imoto T
    Cell Mol Life Sci; 2003 Jan; 60(1):176-84. PubMed ID: 12613666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention of anomeric form in lysozyme-catalyzed reaction.
    Yanase Y; Fukamizo T; Hayashi K; Goto S
    Arch Biochem Biophys; 1987 Feb; 253(1):168-75. PubMed ID: 3813561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysozyme-catalyzed reaction of chitooligosaccharides.
    Masaki A; Fukamizo T; Otakara A; Torikata T; Hayashi K; Imoto T
    J Biochem; 1981 Aug; 90(2):527-33. PubMed ID: 7298599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H- and 13C-n.m.r. assignments and conformational analysis of some monosaccharide and oligosaccharide substrate-analogues of lysozyme.
    Boyd J; Porteous R; Soffe N; Delepierre M
    Carbohydr Res; 1985 Jun; 139():35-46. PubMed ID: 4028052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissection of the functional role of structural elements of tyrosine-63 in the catalytic action of human lysozyme.
    Muraki M; Harata K; Jigami Y
    Biochemistry; 1992 Sep; 31(38):9212-9. PubMed ID: 1390708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysozyme-catalyzed reaction in continuous flow system.
    Fukamizo T; Goto S
    J Biochem; 1991 Mar; 109(3):416-20. PubMed ID: 1880128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of binding constants for N-acetyl-D-glucosamine oligomers with lysozyme.
    Nakano Y; Kawauchi S; Komiyama J; Iijima T
    Biochem Int; 1987 Aug; 15(2):303-10. PubMed ID: 3435526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid sequence of Egyptian goose egg-white lysozyme and effects of amino acid substitution on the enzymatic activity.
    Kawamura S; Toshima G; Chijiiwa Y; Torikata T; Araki T
    Biosci Biotechnol Biochem; 2012; 76(4):691-8. PubMed ID: 22484934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibilities of bacterial cellulose containing N-acetylglucosamine residues for cellulolytic and chitinolytic enzymes.
    Ogawa R; Miura Y; Tokura S; Koriyama T
    Int J Biol Macromol; 1992 Dec; 14(6):343-7. PubMed ID: 1476990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histidine-114 at subsites E and F can explain the characteristic enzymatic activity of guinea hen egg-white lysozyme.
    Toshima G; Kawamura S; Araki T; Torikata T
    Biosci Biotechnol Biochem; 2003 Mar; 67(3):540-6. PubMed ID: 12723601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation.
    Drouillard S; Armand S; Davies GJ; Vorgias CE; Henrissat B
    Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):945-9. PubMed ID: 9396742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding mode of N,N',N",N"'-tetraacetylchitotetraitol to hen egg white lysozyme.
    Fukamizo T; Ohkawa T; Ikeda Y; Torikata T; Goto S
    Carbohydr Res; 1995 Feb; 267(1):135-42. PubMed ID: 7697663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins.
    Goodwin OY; Thomasson MS; Lin AJ; Sweeney MM; Macnaughtan MA
    J Biotechnol; 2013 Dec; 168(4):315-23. PubMed ID: 24140293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.