BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 3349102)

  • 1. Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment.
    Olafsdottir K; Reed DJ
    Biochim Biophys Acta; 1988 Mar; 964(3):377-82. PubMed ID: 3349102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress.
    Ravindranath V; Reed DJ
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1075-9. PubMed ID: 2363716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in biliary glutathione level during ischemia-reperfusion of rat liver.
    Fujikawa M; Kamiike W; Hatanaka N; Shimizu S; Akashi A; Miyata M; Kurosawa K; Yoshida Y; Tagawa K; Matsuda H
    J Surg Res; 1994 Nov; 57(5):569-73. PubMed ID: 7967594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatment.
    Brodie AE; Reed DJ
    Chem Biol Interact; 1992 Sep; 84(2):125-32. PubMed ID: 1394620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for the changes in levels of glutathione upon exposure of cultured mammalian cells to tertiary-butylhydroperoxide and diamide.
    Ochi T
    Arch Toxicol; 1993; 67(6):401-10. PubMed ID: 8215909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of 2-oxoglutarate dehydrogenase in rat liver mitochondria by its substrate and t-butyl hydroperoxide.
    Rokutan K; Kawai K; Asada K
    J Biochem; 1987 Feb; 101(2):415-22. PubMed ID: 3584093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The time-course of mixed disulfide formation between GSH and proteins in rat blood after oxidative stress with tert-butyl hydroperoxide.
    Di Simplicio P; Rossi R
    Biochim Biophys Acta; 1994 Apr; 1199(3):245-52. PubMed ID: 8161563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reduction of glutathione disulfide produced by t-butyl hydroperoxide in respiring mitochondria.
    Liu H; Kehrer JP
    Free Radic Biol Med; 1996; 20(3):433-42. PubMed ID: 8720915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of microsomal glutathione S-transferase in tert-butyl hydroperoxide-induced oxidative stress of isolated rat liver.
    Aniya Y; Daido A
    Jpn J Pharmacol; 1994 Sep; 66(1):123-30. PubMed ID: 7861657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone).
    Bellomo G; Mirabelli F; DiMonte D; Richelmi P; Thor H; Orrenius C; Orrenius S
    Biochem Pharmacol; 1987 Apr; 36(8):1313-20. PubMed ID: 3593416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver.
    Crane D; Häussinger D; Graf P; Sies H
    Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):977-87. PubMed ID: 6629333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an organic hydroperoxide on the activity of antioxidant enzymes in cultured mammalian cells.
    Ochi T
    Toxicology; 1990 Apr; 61(3):229-39. PubMed ID: 2330596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of selenium-dependent glutathione peroxidase in protecting against t-butyl hydroperoxide-induced damage in hepatocytes.
    Yuan C; Penttilä KE; Alfthan G; Lindros KO
    Pharmacol Toxicol; 1991 Mar; 68(3):196-200. PubMed ID: 2057450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress.
    Lauterburg BH; Smith CV; Hughes H; Mitchell JR
    J Clin Invest; 1984 Jan; 73(1):124-33. PubMed ID: 6690473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages.
    Sutherland MW; Nelson J; Harrison G; Forman HJ
    Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of thiols in mitochondrial susceptibility to iron and tert-butyl hydroperoxide-mediated toxicity in cultured mouse hepatocytes.
    Shertzer HG; Bannenberg GL; Zhu H; Liu RM; Moldéus P
    Chem Res Toxicol; 1994; 7(3):358-66. PubMed ID: 8075367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transfer of mitochondrially targeted glutathione reductase protects H441 cells from t-butyl hydroperoxide-induced oxidant stresses.
    O'Donovan DJ; Katkin JP; Tamura T; Husser R; Xu X; Smith CV; Welty SE
    Am J Respir Cell Mol Biol; 1999 Feb; 20(2):256-63. PubMed ID: 9922216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of mitochondrial dysfunction in broilers with pulmonary hypertension syndrome (Ascites): effect of t-butyl hydroperoxide on hepatic mitochondrial function, glutathione, and related thiols.
    Cawthon D; McNew R; Beers KW; Bottje WG
    Poult Sci; 1999 Jan; 78(1):114-24. PubMed ID: 10023758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress.
    Adams JD; Lauterburg BH; Mitchell JR
    J Pharmacol Exp Ther; 1983 Dec; 227(3):749-54. PubMed ID: 6655568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood.
    Di Simplicio P; Lupis E; Rossi R
    Biochim Biophys Acta; 1996 Mar; 1289(2):252-60. PubMed ID: 8600982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.