These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 33491122)

  • 1. On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion.
    Wang ZA; Xu J
    J Math Biol; 2021 Jan; 82(1-2):7. PubMed ID: 33491122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic population growth in spatially heterogeneous environments: the density-dependent case.
    Hening A; Nguyen DH; Yin G
    J Math Biol; 2018 Feb; 76(3):697-754. PubMed ID: 28674928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments.
    Guo Q; He X; Ni WM
    J Math Biol; 2020 Aug; 81(2):403-433. PubMed ID: 32621114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reaction-diffusion within-host HIV model with cell-to-cell transmission.
    Ren X; Tian Y; Liu L; Liu X
    J Math Biol; 2018 Jun; 76(7):1831-1872. PubMed ID: 29305736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence in Stochastic Lotka-Volterra Food Chains with Intraspecific Competition.
    Hening A; Nguyen DH
    Bull Math Biol; 2018 Oct; 80(10):2527-2560. PubMed ID: 30109461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.
    He X; Zheng S
    J Math Biol; 2017 Jul; 75(1):239-257. PubMed ID: 27915430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of sparse large Lotka-Volterra ecosystems.
    Akjouj I; Najim J
    J Math Biol; 2022 Nov; 85(6-7):66. PubMed ID: 36374355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition of Multiple Species in Advective Environments.
    Vasilyeva O
    Bull Math Biol; 2017 Jun; 79(6):1274-1294. PubMed ID: 28444498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological invasion in competition-diffusion systems when the exotic species is either very strong or very weak.
    Contento L; Hilhorst D; Mimura M
    J Math Biol; 2018 Nov; 77(5):1383-1405. PubMed ID: 29968094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population dynamics with resource-dependent dispersal: single- and two-species models.
    Tang D; Wang ZA
    J Math Biol; 2023 Jan; 86(2):23. PubMed ID: 36625939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constrained minimization problems for the reproduction number in meta-population models.
    Poghotanyan G; Feng Z; Glasser JW; Hill AN
    J Math Biol; 2018 Dec; 77(6-7):1795-1831. PubMed ID: 29445854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weak Selection and the Separation of Eco-evo Time Scales using Perturbation Analysis.
    Gerlee P
    Bull Math Biol; 2022 Mar; 84(5):52. PubMed ID: 35305188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harvesting and seeding of stochastic populations: analysis and numerical approximation.
    Hening A; Tran KQ
    J Math Biol; 2020 Jul; 81(1):65-112. PubMed ID: 32415374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structured population model with diffusion in structure space.
    Pugliese A; Milner F
    J Math Biol; 2018 Dec; 77(6-7):2079-2102. PubMed ID: 29744584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global dynamics of a tuberculosis model with age-dependent latency and time delays in treatment.
    Guo ZK; Huo HF; Xiang H; Ren QY
    J Math Biol; 2023 Oct; 87(5):66. PubMed ID: 37798450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems.
    Pellacci B; Verzini G
    J Math Biol; 2018 May; 76(6):1357-1386. PubMed ID: 28889217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat.
    Li B; Otto G
    Bull Math Biol; 2023 Nov; 85(12):121. PubMed ID: 37922015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mathematical Model of Fluid Transport in an Accurate Reconstruction of Parotid Acinar Cells.
    Vera-Sigüenza E; Pages N; Rugis J; Yule DI; Sneyd J
    Bull Math Biol; 2019 Mar; 81(3):699-721. PubMed ID: 30484039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong biological correlations as a cause of autonomous oscillations in epidemics.
    Dimaschko J; Shlyakhover V; Iabluchanskyi M
    J Math Biol; 2023 Aug; 87(3):44. PubMed ID: 37584815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic Lotka-Volterra food chains.
    Hening A; Nguyen DH
    J Math Biol; 2018 Jul; 77(1):135-163. PubMed ID: 29150714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.