BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 33491336)

  • 1. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models.
    Xu C; Lopez R; Mehlman E; Regier J; Jordan MI; Yosef N
    Mol Syst Biol; 2021 Jan; 17(1):e9620. PubMed ID: 33491336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep generative modeling for single-cell transcriptomics.
    Lopez R; Regier J; Cole MB; Jordan MI; Yosef N
    Nat Methods; 2018 Dec; 15(12):1053-1058. PubMed ID: 30504886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised integration of single-cell transcriptomics data.
    Andreatta M; Hérault L; Gueguen P; Gfeller D; Berenstein AJ; Carmona SJ
    Nat Commun; 2024 Jan; 15(1):872. PubMed ID: 38287014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical downstream analysis steps for single-cell RNA sequencing data.
    Zhang Z; Cui F; Lin C; Zhao L; Wang C; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic single cell RNA sequencing data from small pilot studies using deep generative models.
    Treppner M; Salas-Bastos A; Hess M; Lenz S; Vogel T; Binder H
    Sci Rep; 2021 Apr; 11(1):9403. PubMed ID: 33931726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets.
    Doddahonnaiah D; Lenehan PJ; Hughes TK; Zemmour D; Garcia-Rivera E; Venkatakrishnan AJ; Chilaka R; Khare A; Kasaraneni A; Garg A; Anand A; Barve R; Thiagarajan V; Soundararajan V
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34200671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical Bayes method for differential expression analysis of single cells with deep generative models.
    Boyeau P; Regier J; Gayoso A; Jordan MI; Lopez R; Yosef N
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2209124120. PubMed ID: 37192164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking atlas-level data integration in single-cell genomics.
    Luecken MD; Büttner M; Chaichoompu K; Danese A; Interlandi M; Mueller MF; Strobl DC; Zappia L; Dugas M; Colomé-Tatché M; Theis FJ
    Nat Methods; 2022 Jan; 19(1):41-50. PubMed ID: 34949812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level.
    Liu Y; Wei G; Li C; Shen LC; Gasser RB; Song J; Chen D; Yu DJ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network.
    Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X
    Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data.
    Xu J; Zhang A; Liu F; Chen L; Zhang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.