These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33491447)

  • 1. Correlated Optical-Electrochemical Measurements Reveal Bidirectional Current Steps for Graphene Nanoplatelet Collisions at Ultramicroelectrodes.
    Pendergast AD; Renault C; Dick JE
    Anal Chem; 2021 Feb; 93(5):2898-2906. PubMed ID: 33491447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing Dynamic Rotation of Single Graphene Nanoplatelets on Electrified Microinterfaces.
    Pendergast AD; Deng Z; Maroun F; Renault C; Dick JE
    ACS Nano; 2021 Jan; 15(1):1250-1258. PubMed ID: 33325229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.
    Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ
    Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring.
    Dick JE; Hilterbrand AT; Boika A; Upton JW; Bard AJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5303-8. PubMed ID: 25870261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Measurement of the Size Distribution and Concentration of Insulating Particles by Electrochemical Collision on Hemispherical Ultramicroelectrodes.
    Deng Z; Elattar R; Maroun F; Renault C
    Anal Chem; 2018 Nov; 90(21):12923-12929. PubMed ID: 30284818
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Park H; Park JH
    J Phys Chem Lett; 2020 Dec; 11(23):10250-10255. PubMed ID: 33210920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.
    Shin C; Park TE; Park C; Kwon SJ
    Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Electroosmotic Flow on Stochastic Collisions at Ultramicroelectrodes.
    Thorgaard SN; Jenkins S; Tarach AR
    Anal Chem; 2020 Sep; 92(18):12663-12669. PubMed ID: 32809815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated electrochemical and optical tracking of discrete collision events.
    Fosdick SE; Anderson MJ; Nettleton EG; Crooks RM
    J Am Chem Soc; 2013 Apr; 135(16):5994-7. PubMed ID: 23590646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Microelectrode Insulator Influences Water Nanodroplet Collisions.
    Vannoy KJ; Renault C; Dick JE
    Anal Chem; 2023 May; 95(18):7286-7293. PubMed ID: 37092981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Mediator Enhanced Collisions on an Ultramicroelectrode for Selective Identification of Single
    Chen Y; Liu Y; Wang D; Gao G; Zhi J
    Anal Chem; 2022 Sep; 94(37):12630-12637. PubMed ID: 36068505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction.
    Xiang ZP; Deng HQ; Peljo P; Fu ZY; Wang SL; Mandler D; Sun GQ; Liang ZX
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3464-3468. PubMed ID: 29377523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets.
    Vannoy KJ; Lee I; Sode K; Dick JE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing Discrete Blocking Events at a Polarized Micro- or Submicro-Liquid/Liquid Interface.
    Zhang J; He S; Fang T; Xiang Z; Sun X; Yu J; Ouyang G; Huang X; Deng H
    J Phys Chem B; 2023 Oct; 127(41):8974-8981. PubMed ID: 37796864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Average collision velocity of single yeast cells during electrochemically induced impacts.
    Lutkenhaus JA; Ahmed JU; Hasan M; Prosser DC; Alvarez JC
    Analyst; 2024 May; 149(11):3214-3223. PubMed ID: 38656271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Ion Transfer across Liquid-Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes.
    Deng H; Dick JE; Kummer S; Kragl U; Strauss SH; Bard AJ
    Anal Chem; 2016 Aug; 88(15):7754-61. PubMed ID: 27387789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the last milliseconds of an individual graphene nanoplatelet before impact with a Pt surface by bipolar electrochemistry.
    Deng Z; Renault C
    Chem Sci; 2021 Sep; 12(37):12494-12500. PubMed ID: 34603681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.