These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 33491468)
1. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice. Huang SY; Zhuo C; Du XY; Li HS Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468 [TBL] [Abstract][Full Text] [Related]
2. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Kang Z; Zhang W; Qin J; Li S; Yang X; Wei X; Li H Ecotoxicol Environ Saf; 2020 Mar; 190():110102. PubMed ID: 31881403 [TBL] [Abstract][Full Text] [Related]
3. Role of passivators for Cd alleviation in rice-water spinach intercropping system. Yang X; Zhang W; Qin J; Zhang X; Li H Ecotoxicol Environ Saf; 2020 Dec; 205():111321. PubMed ID: 32979800 [TBL] [Abstract][Full Text] [Related]
4. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Ma J; Lei E; Lei M; Liu Y; Chen T Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933 [TBL] [Abstract][Full Text] [Related]
5. Remediation of Cd contaminated paddy fields by intercropping of the high- and low- Cd-accumulating rice cultivars. Xue T; Liao X; Li H; Xie Y; Wei W; Chen J; Liu Z; Ji X Sci Total Environ; 2023 Jun; 878():163133. PubMed ID: 37001672 [TBL] [Abstract][Full Text] [Related]
6. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil. Yan Y; Yang J; Guo Y; Yang J; Wan X; Zhao C; Guo J; Chen T Int J Phytoremediation; 2022; 24(1):25-33. PubMed ID: 33998931 [TBL] [Abstract][Full Text] [Related]
7. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Wan X; Lei M; Chen T; Yang J Sci Total Environ; 2017 Feb; 579():1467-1475. PubMed ID: 27908626 [TBL] [Abstract][Full Text] [Related]
8. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Wang W; Yang X; Mo Q; Li Y; Meng D; Li H Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521 [TBL] [Abstract][Full Text] [Related]
9. Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Kang Z; Gong M; Li Y; Chen W; Yang Y; Qin J; Li H Sci Total Environ; 2021 Dec; 800():149600. PubMed ID: 34426335 [TBL] [Abstract][Full Text] [Related]
10. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping. Yan Y; Yang J; Wan X; Shi H; Yang J; Ma C; Lei M; Chen T Sci Total Environ; 2022 Mar; 812():152475. PubMed ID: 34952060 [TBL] [Abstract][Full Text] [Related]
11. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Hua CY; Chen JX; Cao Y; Li HB; Chen Y; Ma LQ Chemosphere; 2020 May; 247():125916. PubMed ID: 32069716 [TBL] [Abstract][Full Text] [Related]
12. Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. Wang J; Lu X; Zhang J; Ouyang Y; Wei G; Xiong Y J Hazard Mater; 2020 Jul; 394():122505. PubMed ID: 32200237 [TBL] [Abstract][Full Text] [Related]
13. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Yang X; Qin J; Li J; Lai Z; Li H J Hazard Mater; 2021 Mar; 406():124325. PubMed ID: 33153785 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Ye WL; Khan MA; McGrath SP; Zhao FJ Environ Pollut; 2011 Dec; 159(12):3739-43. PubMed ID: 21840633 [TBL] [Abstract][Full Text] [Related]
15. Intercropped Amygdalus persica and Pteris vittata applied with additives presents a safe utilization and remediation mode for arsenic-contaminated orchard soil. Li Y; Yang J; Guo J; Zheng G; Chen T; Meng X; He M; Ma C Sci Total Environ; 2023 Jun; 879():163034. PubMed ID: 36990239 [TBL] [Abstract][Full Text] [Related]
16. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. Zeng W; Wan X; Lei M; Chen T Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467 [TBL] [Abstract][Full Text] [Related]
17. [Interspecific relationship and Si, N nutrition of rice in rice-water spinach intercropping system.]. Ning CC; Yang RS; Cai MX; Wang JW; Luo SM; Cai KZ Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):474-484. PubMed ID: 29749155 [TBL] [Abstract][Full Text] [Related]
18. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types]. Zhao B; Shen LB; Cheng MM; Wang SF; Wu LH; Zhou SB; Luo YM Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2725-31. PubMed ID: 22263481 [TBL] [Abstract][Full Text] [Related]
19. [Plant growth and Cd accumulation characteristics in different planting modes of maize and Amaranthus hypochondriacus.]. Guo N; Chi GY; Shi Y; Chen X Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3164-3174. PubMed ID: 31529892 [TBL] [Abstract][Full Text] [Related]
20. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba. Wan X; Lei M Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]