These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 33491718)
41. Electrochemically Induced Phase Transformation in Vanadium Oxide Boosts Zn-Ion Intercalation. Mo L; Huang Y; Wang Y; Wei T; Zhang X; Zhang H; Ren Y; Ji D; Li Z; Hu L ACS Nano; 2024 Jan; 18(1):1172-1180. PubMed ID: 38146712 [TBL] [Abstract][Full Text] [Related]
42. A theoretical study on the role of ammonium ions in the double-layered V Qu Z; Zhou B; Li B; Song Q; Cao YH; Jiang Z Phys Chem Chem Phys; 2021 Feb; 23(7):4187-4194. PubMed ID: 33586748 [TBL] [Abstract][Full Text] [Related]
43. Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Li J; Luo N; Wan F; Zhao S; Li Z; Li W; Guo J; Shearing PR; Brett DJL; Carmalt CJ; Chai G; He G; Parkin IP Nanoscale; 2020 Oct; 12(40):20638-20648. PubMed ID: 32657312 [TBL] [Abstract][Full Text] [Related]
44. Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. Zhang Y; Xu L; Jiang H; Liu Y; Meng C J Colloid Interface Sci; 2021 Dec; 603():641-650. PubMed ID: 34225069 [TBL] [Abstract][Full Text] [Related]
45. Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zinc-Ion Storage Capacity in Aqueous Zinc-Ion Batteries. Li Z; Wei Y; Liu Y; Yan S; Wu M Adv Sci (Weinh); 2023 Mar; 10(8):e2206860. PubMed ID: 36646513 [TBL] [Abstract][Full Text] [Related]
46. Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. Liang G; Gan Z; Wang X; Jin X; Xiong B; Zhang X; Chen S; Wang Y; He H; Zhi C ACS Nano; 2021 Nov; 15(11):17717-17728. PubMed ID: 34726393 [TBL] [Abstract][Full Text] [Related]
47. Dual intercalation of inorganics-organics for synergistically tuning the layer spacing of V Feng Z; Zhang Y; Zhao Y; Sun J; Liu Y; Jiang H; Cui M; Hu T; Meng C Nanoscale; 2022 Jun; 14(24):8776-8788. PubMed ID: 35678364 [TBL] [Abstract][Full Text] [Related]
49. Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium-Ion Batteries. Bai P; Jiang K; Zhang X; Xu J; Guo S; Zhou H ACS Appl Mater Interfaces; 2020 Mar; 12(9):10490-10495. PubMed ID: 32049481 [TBL] [Abstract][Full Text] [Related]
50. Potassium Ammonium Vanadate with Rich Oxygen Vacancies for Fast and Highly Stable Zn-Ion Storage. Zong Q; Wang Q; Liu C; Tao D; Wang J; Zhang J; Du H; Chen J; Zhang Q; Cao G ACS Nano; 2022 Mar; 16(3):4588-4598. PubMed ID: 35258924 [TBL] [Abstract][Full Text] [Related]
51. Graphene-like Vanadium Oxygen Hydrate (VOH) Nanosheets Intercalated and Exfoliated by Polyaniline (PANI) for Aqueous Zinc-Ion Batteries (ZIBs). Wang M; Zhang J; Zhang L; Li J; Wang W; Yang Z; Zhang L; Wang Y; Chen J; Huang Y; Mitlin D; Li X ACS Appl Mater Interfaces; 2020 Jul; 12(28):31564-31574. PubMed ID: 32551467 [TBL] [Abstract][Full Text] [Related]
52. High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion-Intercalation of Vanadyl Ions. Kim S; Shan X; Abeykoon M; Kwon G; Olds D; Teng X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25993-26000. PubMed ID: 34019372 [TBL] [Abstract][Full Text] [Related]
53. Hierarchical Porous Metallic V Ding Y; Peng Y; Chen S; Zhang X; Li Z; Zhu L; Mo LE; Hu L ACS Appl Mater Interfaces; 2019 Nov; 11(47):44109-44117. PubMed ID: 31687795 [TBL] [Abstract][Full Text] [Related]
54. A comparative insight of potassium vanadates as positive electrode materials for Li batteries: influence of the long-range and local structure. Baddour-Hadjean R; Boudaoud A; Bach S; Emery N; Pereira-Ramos JP Inorg Chem; 2014 Feb; 53(3):1764-72. PubMed ID: 24456046 [TBL] [Abstract][Full Text] [Related]
55. Superior-Performance Aqueous Zinc-Ion Batteries Based on the Zhu X; Cao Z; Wang W; Li H; Dong J; Gao S; Xu D; Li L; Shen J; Ye M ACS Nano; 2021 Feb; 15(2):2971-2983. PubMed ID: 33492135 [TBL] [Abstract][Full Text] [Related]
56. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy. Yang M; Wang Z; Ben H; Zhao M; Luo J; Chen D; Lu Z; Wang L; Liu C J Colloid Interface Sci; 2022 Feb; 607(Pt 1):68-75. PubMed ID: 34492355 [TBL] [Abstract][Full Text] [Related]
57. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries. Sun Q; Cheng H; Nie W; Lu X; Zhao H Chem Asian J; 2022 Apr; 17(7):e202200067. PubMed ID: 35188329 [TBL] [Abstract][Full Text] [Related]
58. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. Li C; Li M; Xu H; Zhao F; Gong S; Wang H; Qi J; Wang Z; Fan X; Peng W; Liu J J Colloid Interface Sci; 2022 Oct; 623():277-284. PubMed ID: 35597011 [TBL] [Abstract][Full Text] [Related]
59. Layered manganese dioxide nanoflowers with Cu Long F; Xiang Y; Yang S; Li Y; Du H; Liu Y; Wu X; Wu X J Colloid Interface Sci; 2022 Jun; 616():101-109. PubMed ID: 35193050 [TBL] [Abstract][Full Text] [Related]
60. Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. Xu G; Zhang Y; Gong Z; Lu T; Pan L J Colloid Interface Sci; 2021 Jul; 593():417-423. PubMed ID: 33744550 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]