BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33491774)

  • 1. Prediction of specialty coffee flavors based on near-infrared spectra using machine- and deep-learning methods.
    Chang YT; Hsueh MC; Hung SP; Lu JM; Peng JH; Chen SF
    J Sci Food Agric; 2021 Aug; 101(11):4705-4714. PubMed ID: 33491774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brazilian Coffee Blends: A Simple and Fast Method by Near-Infrared Spectroscopy for the Determination of the Sensory Attributes Elicited in Professional Coffee Cupping.
    Baqueta MR; Coqueiro A; Valderrama P
    J Food Sci; 2019 Jun; 84(6):1247-1255. PubMed ID: 31116425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans.
    Tolessa K; Rademaker M; De Baets B; Boeckx P
    Talanta; 2016 Apr; 150():367-74. PubMed ID: 26838420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Off-flavor profiling of cultured salmonids using hyperspectral imaging combined with machine learning.
    Sun D; Zhou C; Hu J; Li L; Ye H
    Food Chem; 2023 May; 408():135166. PubMed ID: 36521293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Not All Flavor Expertise Is Equal: The Language of Wine and Coffee Experts.
    Croijmans I; Majid A
    PLoS One; 2016; 11(6):e0155845. PubMed ID: 27322035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of the 5-hydroxymethylfurfural content in roasted coffee using machine learning based on near-infrared spectroscopy.
    Xie C; Wang C; Zhao M; Zhou W
    Food Chem; 2023 Oct; 422():136199. PubMed ID: 37121208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An E-Liquid Flavor Wheel: A Shared Vocabulary Based on Systematically Reviewing E-Liquid Flavor Classifications in Literature.
    Krüsemann EJZ; Boesveldt S; de Graaf K; Talhout R
    Nicotine Tob Res; 2019 Sep; 21(10):1310-1319. PubMed ID: 29788484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Discrimination among different brands of coffee by using vis-near infrared spectra].
    Wang YY; He Y; Shao YN; Zhang ZF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):702-6. PubMed ID: 17608179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of Tetrastigma hemsleyanum according to geographical origin by near-infrared spectroscopy combined with a deep learning approach.
    Zhou D; Yu Y; Hu R; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118380. PubMed ID: 32388414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of chemical properties of intact green coffee beans using near-infrared spectroscopy.
    Levate Macedo L; da Silva Araújo C; Costa Vimercati W; Gherardi Hein PR; Pimenta CJ; Henriques Saraiva S
    J Sci Food Agric; 2021 Jun; 101(8):3500-3507. PubMed ID: 33274765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination between washed Arabica, natural Arabica and Robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis.
    Buratti S; Sinelli N; Bertone E; Venturello A; Casiraghi E; Geobaldo F
    J Sci Food Agric; 2015 Aug; 95(11):2192-200. PubMed ID: 25258213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods.
    Yang S; Li C; Mei Y; Liu W; Liu R; Chen W; Han D; Xu K
    Front Nutr; 2021; 8():680627. PubMed ID: 34222305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of volatile profiles of green Hawai'ian coffee beans damaged by the coffee berry borer (Hypothenemus hampei).
    Walker HE; Lehman KA; Wall MM; Siderhurst MS
    J Sci Food Agric; 2019 Mar; 99(4):1954-1960. PubMed ID: 30270449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Analysis and Classification of Low-Molecular-Weight Hyaluronic Acid by Near-Infrared Spectroscopy: A Comparison between Traditional Machine Learning and Deep Learning.
    Tian W; Zang L; Nie L; Li L; Zhong L; Guo X; Huang S; Zang H
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of near infrared spectroscopic (NIRS) analysis of caffeine in roasted Arabica coffee by variable selection method of stability competitive adaptive reweighted sampling (SCARS).
    Zhang X; Li W; Yin B; Chen W; Kelly DP; Wang X; Zheng K; Du Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():350-6. PubMed ID: 23786975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative and quantitative analysis of ochratoxin A contamination in green coffee beans using Fourier transform near infrared spectroscopy.
    Taradolsirithitikul P; Sirisomboon P; Dachoupakan Sirisomboon C
    J Sci Food Agric; 2017 Mar; 97(4):1260-1266. PubMed ID: 27324609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis.
    Zhang C; Liu F; He Y
    Sci Rep; 2018 Feb; 8(1):2166. PubMed ID: 29391427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-Learning-Based Mixture Identification for Nuclear Magnetic Resonance Spectroscopy Applied to Plant Flavors.
    Wang Y; Wei W; Du W; Cai J; Liao Y; Lu H; Kong B; Zhang Z
    Molecules; 2023 Nov; 28(21):. PubMed ID: 37959799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees.
    Craig AP; Franca AS; Oliveira LS; Irudayaraj J; Ileleji K
    Talanta; 2014 Oct; 128():393-400. PubMed ID: 25059177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.