These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 33491818)
1. Optical Microfluidic Waveguides and Solution Lasers of Colloidal Semiconductor Quantum Wells. Maskoun J; Gheshlaghi N; Isik F; Delikanli S; Erdem O; Erdem EY; Demir HV Adv Mater; 2021 Mar; 33(10):e2007131. PubMed ID: 33491818 [TBL] [Abstract][Full Text] [Related]
2. "Giant" Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing. Isik F; Delikanli S; Durmusoglu EG; Isik AT; Shabani F; Baruj HD; Demir HV Small; 2024 Sep; 20(38):e2309494. PubMed ID: 38441357 [TBL] [Abstract][Full Text] [Related]
3. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Taghipour N; Delikanli S; Shendre S; Sak M; Li M; Isik F; Tanriover I; Guzelturk B; Sum TC; Demir HV Nat Commun; 2020 Jul; 11(1):3305. PubMed ID: 32620749 [TBL] [Abstract][Full Text] [Related]
4. Observation of optical gain from aqueous quantum well heterostructures in water. Delikanli S; Isik F; Durmusoglu EG; Erdem O; Shabani F; Canimkurbey B; Kumar S; Dehghanpour Baruj H; Demir HV Nanoscale; 2022 Oct; 14(40):14895-14901. PubMed ID: 36106594 [TBL] [Abstract][Full Text] [Related]
5. Ultralow-Threshold and High-Quality Whispering-Gallery-Mode Lasing from Colloidal Core/Hybrid-Shell Quantum Wells. Duan R; Zhang Z; Xiao L; Zhao X; Thung YT; Ding L; Liu Z; Yang J; Ta VD; Sun H Adv Mater; 2022 Apr; 34(13):e2108884. PubMed ID: 34997633 [TBL] [Abstract][Full Text] [Related]
6. Ultrahigh Green and Red Optical Gain Cross Sections from Solutions of Colloidal Quantum Well Heterostructures. Delikanli S; Erdem O; Isik F; Dehghanpour Baruj H; Shabani F; Yagci HB; Durmusoglu EG; Demir HV J Phys Chem Lett; 2021 Mar; 12(9):2177-2182. PubMed ID: 33630593 [TBL] [Abstract][Full Text] [Related]
7. Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells. Altintas Y; Gungor K; Gao Y; Sak M; Quliyeva U; Bappi G; Mutlugun E; Sargent EH; Demir HV ACS Nano; 2019 Sep; 13(9):10662-10670. PubMed ID: 31436957 [TBL] [Abstract][Full Text] [Related]
8. All-colloidal parity-time-symmetric microfiber lasers balanced between the gain of colloidal quantum wells and the loss of colloidal metal nanoparticles. Foroutan-Barenji S; Shabani F; Isik AT; Dikmen Z; Demir HV Nanoscale; 2022 Sep; 14(37):13755-13762. PubMed ID: 36098228 [TBL] [Abstract][Full Text] [Related]
9. Optical Gain in Ultrathin Self-Assembled Bi-Layers of Colloidal Quantum Wells Enabled by the Mode Confinement in their High-Index Dielectric Waveguides. Foroutan-Barenji S; Erdem O; Gheshlaghi N; Altintas Y; Demir HV Small; 2020 Nov; 16(45):e2004304. PubMed ID: 33078558 [TBL] [Abstract][Full Text] [Related]
10. Vertically oriented self-assembly of colloidal CdSe/CdZnS quantum wells controlled Dikmen Z; Işık AT; Bozkaya İ; Dehghanpour Baruj H; Canımkurbey B; Shabani F; Ahmad M; Demir HV Nanoscale; 2023 Jun; 15(22):9745-9751. PubMed ID: 37212550 [TBL] [Abstract][Full Text] [Related]
11. Single-Mode Lasing from "Giant" CdSe/CdS Core-Shell Quantum Dots in Distributed Feedback Structures. Zhang L; Liao C; Lv B; Wang X; Xiao M; Xu R; Yuan Y; Lu C; Cui Y; Zhang J ACS Appl Mater Interfaces; 2017 Apr; 9(15):13293-13303. PubMed ID: 28357855 [TBL] [Abstract][Full Text] [Related]
12. High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells. Guzelturk B; Kelestemur Y; Olutas M; Li Q; Lian T; Demir HV J Phys Chem Lett; 2017 Nov; 8(21):5317-5324. PubMed ID: 29022715 [TBL] [Abstract][Full Text] [Related]
13. Colloidal-Quantum-Dot Ring Lasers with Active Color Control. le Feber B; Prins F; De Leo E; Rabouw FT; Norris DJ Nano Lett; 2018 Feb; 18(2):1028-1034. PubMed ID: 29283266 [TBL] [Abstract][Full Text] [Related]
14. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Li M; Zhi M; Zhu H; Wu WY; Xu QH; Jhon MH; Chan Y Nat Commun; 2015 Sep; 6():8513. PubMed ID: 26419950 [TBL] [Abstract][Full Text] [Related]
15. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Dang C; Lee J; Breen C; Steckel JS; Coe-Sullivan S; Nurmikko A Nat Nanotechnol; 2012 Apr; 7(5):335-9. PubMed ID: 22543426 [TBL] [Abstract][Full Text] [Related]
16. Single mode optofluidic distributed feedback dye laser. Li Z; Zhang Z; Emery T; Scherer A; Psaltis D Opt Express; 2006 Jan; 14(2):696-701. PubMed ID: 19503387 [TBL] [Abstract][Full Text] [Related]
17. A room temperature continuous-wave nanolaser using colloidal quantum wells. Yang Z; Pelton M; Fedin I; Talapin DV; Waks E Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633 [TBL] [Abstract][Full Text] [Related]
18. Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence. Kelestemur Y; Shynkarenko Y; Anni M; Yakunin S; De Giorgi ML; Kovalenko MV ACS Nano; 2019 Dec; 13(12):13899-13909. PubMed ID: 31769648 [TBL] [Abstract][Full Text] [Related]
19. Colloidal Quantum Dot Infrared Lasers Featuring Sub-Single-Exciton Threshold and Very High Gain. Taghipour N; Dalmases M; Whitworth GL; Dosil M; Othonos A; Christodoulou S; Liga SM; Konstantatos G Adv Mater; 2023 Jan; 35(1):e2207678. PubMed ID: 36333885 [TBL] [Abstract][Full Text] [Related]
20. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Gao Y; Li M; Delikanli S; Zheng H; Liu B; Dang C; Sum TC; Demir HV Nanoscale; 2018 May; 10(20):9466-9475. PubMed ID: 29767210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]