These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33491868)

  • 1. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids.
    Yin A; Sun H; Chen H; Liu Z; Tang Q; Yuan Y; Tu Z; Zhuang Z; Chen T
    Cytometry A; 2021 Jun; 99(6):632-640. PubMed ID: 33491868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells.
    Zhang J; Zhang L; Chai L; Yang F; Du M; Chen T
    Micron; 2016 Sep; 88():7-15. PubMed ID: 27239984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
    Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T
    J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCC-FRET: single-cell-based calibration of a FRET system.
    Liu Z; Cao G; Wu G; Chen T
    Opt Express; 2022 Aug; 30(16):29063-29073. PubMed ID: 36299090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplified Instrument Calibration for Wide-Field Fluorescence Resonance Energy Transfer (FRET) Measured by the Sensitized Emission Method.
    Menaesse A; Sumetsky D; Emanuely N; Stein JL; Gates EM; Hoffman BD; Boustany NN
    Cytometry A; 2021 Apr; 99(4):407-416. PubMed ID: 32700451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells.
    Chai L; Zhang J; Zhang L; Chen T
    J Biomed Opt; 2015 Mar; 20(3):037008. PubMed ID: 25793494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated E-FRET microscope for dynamical live-cell FRET imaging.
    Zhang C; Liu Y; Sun H; Lin F; Ma Y; Qu W; Chen T
    J Microsc; 2019 Apr; 274(1):45-54. PubMed ID: 30690742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra.
    Zhang C; Lin F; Du M; Qu W; Mai Z; Qu J; Chen T
    J Microsc; 2018 Jun; 270(3):335-342. PubMed ID: 29437234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra.
    Du M; Zhang L; Xie S; Chen T
    Opt Express; 2016 Jul; 24(14):16037-51. PubMed ID: 27410873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging protein interactions by FRET microscopy: FRET measurements by sensitized emission.
    Verveer PJ; Rocks O; Harpur AG; Bastiaens PI
    CSH Protoc; 2006 Nov; 2006(6):. PubMed ID: 22485984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative dual-channel FRET microscopy.
    Wei L; Zhang J; Mai Z; Yang F; Du M; Lin F; Qu J; Chen T
    Opt Express; 2017 Oct; 25(21):26089-26102. PubMed ID: 29041270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction.
    Zhang J; Li H; Chai L; Zhang L; Qu J; Chen T
    J Microsc; 2015 Feb; 257(2):104-16. PubMed ID: 25354559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical section structured illumination-based Förster resonance energy transfer imaging.
    Liu Z; Luo Z; Chen H; Yin A; Sun H; Zhuang Z; Chen T
    Cytometry A; 2022 Mar; 101(3):264-272. PubMed ID: 34490985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra.
    Su W; Du M; Lin F; Zhang C; Chen T
    J Biophotonics; 2019 Apr; 12(4):e201800314. PubMed ID: 30414249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.
    Chen H; Puhl HL; Koushik SV; Vogel SS; Ikeda SR
    Biophys J; 2006 Sep; 91(5):L39-41. PubMed ID: 16815904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks.
    Li H; Yu H; Chen T
    Microsc Microanal; 2012 Oct; 18(5):1021-9. PubMed ID: 23026309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer.
    Yuan J; Peng L; Bouma BE; Tearney GJ
    Opt Express; 2010 Aug; 18(18):18839-51. PubMed ID: 20940777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.