These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33492134)

  • 1. Probing Bias-Induced Electron Density Shifts in Metal-Molecule Interfaces via Tip-Enhanced Raman Scattering.
    Braun K; Hauler O; Zhang D; Wang X; Chassé T; Meixner AJ
    J Am Chem Soc; 2021 Feb; 143(4):1816-1821. PubMed ID: 33492134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Adsorption Configurations of Small Molecules on Surfaces by Single-Molecule Tip-Enhanced Raman Spectroscopy.
    Zhang Y; Zhang R; Jiang S; Zhang Y; Dong ZC
    Chemphyschem; 2019 Jan; 20(1):37-41. PubMed ID: 30411453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering.
    Sun M; Fang Y; Yang Z; Xu H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9412-9. PubMed ID: 19830324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the deformation of [12]cycloparaphenylene molecular nanohoops adsorbed on metal surfaces by tip-enhanced Raman spectroscopy.
    Li H; Zhang YF; Zhang XB; Farrukh A; Zhang Y; Zhang Y; Dong ZC
    J Chem Phys; 2020 Dec; 153(24):244201. PubMed ID: 33380108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Chemical Composition and Molecular Order in Organic Photovoltaic Blend Thin Films Probed by Surface-Enhanced Raman Spectroscopy.
    Razzell-Hollis J; Thiburce Q; Tsoi WC; Kim JS
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31469-31481. PubMed ID: 27786457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving the Correlation between Tip-Enhanced Resonance Raman Scattering and Local Electronic States with 1 nm Resolution.
    Liu S; Müller M; Sun Y; Hamada I; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Aug; 19(8):5725-5731. PubMed ID: 31361964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage tuning of vibrational mode energies in single-molecule junctions.
    Li Y; Doak P; Kronik L; Neaton JB; Natelson D
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1282-7. PubMed ID: 24474749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Enhanced Raman Scattering Stimulated by Strong Metal-Molecule Interactions in a C
    Yasuraoka K; Kaneko S; Kobayashi S; Tsukagoshi K; Nishino T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51602-51607. PubMed ID: 34695353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the Resonance Raman Effect in Tip-Enhanced Raman Spectroscopy Using a Thin Insulating Film.
    Jaculbia R; Hayazawa N; Imada H; Kim Y
    Appl Spectrosc; 2020 Nov; 74(11):1391-1397. PubMed ID: 32524828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy.
    Liu P; Chulhai DV; Jensen L
    ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts.
    Shi H; Zhao B; Ma J; Bronson MJ; Cai Z; Chen J; Wang Y; Cronin M; Jensen L; Cronin SB
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36252-36258. PubMed ID: 31498591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging Electric Fields in SERS and TERS Using the Vibrational Stark Effect.
    Marr JM; Schultz ZD
    J Phys Chem Lett; 2013 Oct; 4(19):. PubMed ID: 24273634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joule Heating in Single-Molecule Point Contacts Studied by Tip-Enhanced Raman Spectroscopy.
    Cirera B; Wolf M; Kumagai T
    ACS Nano; 2022 Oct; 16(10):16443-16451. PubMed ID: 36197071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule tip-enhanced Raman spectroscopy of C
    Cirera B; Liu S; Park Y; Hamada I; Wolf M; Shiotari A; Kumagai T
    Phys Chem Chem Phys; 2024 Aug; 26(32):21325-21331. PubMed ID: 39082139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions.
    Li Y; Zolotavin P; Doak P; Kronik L; Neaton JB; Natelson D
    Nano Lett; 2016 Feb; 16(2):1104-9. PubMed ID: 26814562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing ground-state single-electron self-exchange across a molecule-metal interface.
    Wang Y; Sevinc PC; He Y; Lu HP
    J Am Chem Soc; 2011 May; 133(18):6989-96. PubMed ID: 21486067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast electron injection into photo-excited organic molecules.
    Cvetko D; Fratesi G; Kladnik G; Cossaro A; Brivio GP; Venkataraman L; Morgante A
    Phys Chem Chem Phys; 2016 Aug; 18(32):22140-5. PubMed ID: 27444572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy.
    Kurouski D; Mattei M; Van Duyne RP
    Nano Lett; 2015 Dec; 15(12):7956-62. PubMed ID: 26580153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.