These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 33492292)
1. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease. Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292 [TBL] [Abstract][Full Text] [Related]
2. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. Zhang F; Kaufman HL; Deng Y; Drabier R BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S4. PubMed ID: 23369435 [TBL] [Abstract][Full Text] [Related]
3. Comorbidities Incorporated to Improve Prediction for Prevalent Mild Cognitive Impairment and Alzheimer's Disease in the HABS-HD Study. Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE; J Alzheimers Dis; 2023; 96(4):1529-1546. PubMed ID: 38007662 [TBL] [Abstract][Full Text] [Related]
4. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease. Zhang Y; Liu S Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141 [TBL] [Abstract][Full Text] [Related]
5. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease. Ota K; Oishi N; Ito K; Fukuyama H; ; J Neurosci Methods; 2015 Dec; 256():168-83. PubMed ID: 26318777 [TBL] [Abstract][Full Text] [Related]
6. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
7. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. Zhang X; Lu X; Shi Q; Xu XQ; Leung HC; Harris LN; Iglehart JD; Miron A; Liu JS; Wong WH BMC Bioinformatics; 2006 Apr; 7():197. PubMed ID: 16606446 [TBL] [Abstract][Full Text] [Related]
8. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics. Lin X; Li C; Zhang Y; Su B; Fan M; Wei H Molecules; 2017 Dec; 23(1):. PubMed ID: 29278382 [TBL] [Abstract][Full Text] [Related]
9. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods. Li L; Ching WK; Liu ZP Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551 [TBL] [Abstract][Full Text] [Related]
10. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. Niijima S; Kuhara S BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691 [TBL] [Abstract][Full Text] [Related]
11. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
12. Individual identification for different age groups using functional connectivity strength. Zhang Y; Liu S; Yu X Neurol Sci; 2020 Feb; 41(2):417-426. PubMed ID: 31713193 [TBL] [Abstract][Full Text] [Related]
13. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. Sanz H; Valim C; Vegas E; Oller JM; Reverter F BMC Bioinformatics; 2018 Nov; 19(1):432. PubMed ID: 30453885 [TBL] [Abstract][Full Text] [Related]
14. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. Shi P; Ray S; Zhu Q; Kon MA BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564 [TBL] [Abstract][Full Text] [Related]
15. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features. Jongin Kim ; Boreom Lee Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1990-1993. PubMed ID: 29060285 [TBL] [Abstract][Full Text] [Related]
17. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI. Duc NT; Ryu S; Qureshi MNI; Choi M; Lee KH; Lee B Neuroinformatics; 2020 Jan; 18(1):71-86. PubMed ID: 31093956 [TBL] [Abstract][Full Text] [Related]
18. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data. Zou M; Liu Z; Zhang XS; Wang Y Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859 [TBL] [Abstract][Full Text] [Related]
19. Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging. Wang R; Li R; Lei Y; Zhu Q Biomed Mater Eng; 2015; 26 Suppl 1():S975-81. PubMed ID: 26406101 [TBL] [Abstract][Full Text] [Related]
20. An efficient alpha seeding method for optimized extreme learning machine-based feature selection algorithm. Ding X; Yang F; Jin S; Cao J Comput Biol Med; 2021 Jul; 134():104505. PubMed ID: 34102404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]