These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33492316)
1. Flow control in a laminate capillary-driven microfluidic device. Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316 [TBL] [Abstract][Full Text] [Related]
2. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms. Peshin S; George D; Shiri R; Kulinsky L; Madou M Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427 [TBL] [Abstract][Full Text] [Related]
3. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip. Pompano RR; Platt CE; Karymov MA; Ismagilov RF Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156 [TBL] [Abstract][Full Text] [Related]
4. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis. Mavrogiannis N; Desmond M; Ling K; Fu X; Gagnon Z Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404385 [TBL] [Abstract][Full Text] [Related]
7. High speed droplet-based delivery system for passive pumping in microfluidic devices. Resto PJ; Mogen B; Wu F; Berthier E; Beebe D; Williams J J Vis Exp; 2009 Sep; (31):. PubMed ID: 19727061 [TBL] [Abstract][Full Text] [Related]
8. Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves. Hagmeyer B; Zechnall F; Stelzle M Biomicrofluidics; 2014 Sep; 8(5):056501. PubMed ID: 25332747 [TBL] [Abstract][Full Text] [Related]
9. The dynamics of capillary flow in an open-channel system featuring trigger valves. Tokihiro JC; Robertson IH; Gregucci D; Shin A; Michelini E; Nicholson TM; Olanrewaju A; Theberge AB; Berthier J; Berthier E bioRxiv; 2024 Nov; ():. PubMed ID: 39345588 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Capillary-Driven Flow for Paper-Based Microfluidic Channels. Songok J; Toivakka M ACS Appl Mater Interfaces; 2016 Nov; 8(44):30523-30530. PubMed ID: 27750422 [TBL] [Abstract][Full Text] [Related]
11. A new class of magnetically actuated pumps and valves for microfluidic applications. Hamilton JK; Bryan MT; Gilbert AD; Ogrin FY; Myers TO Sci Rep; 2018 Jan; 8(1):933. PubMed ID: 29343852 [TBL] [Abstract][Full Text] [Related]
12. Preprogrammed capillarity to passively control system-level sequential and parallel microfluidic flows. Kim SJ; Paczesny S; Takayama S; Kurabayashi K Lab Chip; 2013 Jun; 13(11):2091-8. PubMed ID: 23598742 [TBL] [Abstract][Full Text] [Related]
13. Paper pump for passive and programmable transport. Wang X; Hagen JA; Papautsky I Biomicrofluidics; 2013; 7(1):14107. PubMed ID: 24403999 [TBL] [Abstract][Full Text] [Related]
15. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel. Jun Kang Y; Ryu J; Lee SJ Biomicrofluidics; 2013; 7(4):44106. PubMed ID: 24404040 [TBL] [Abstract][Full Text] [Related]
16. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. Chen X; Chen S; Zhang Y; Yang H Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757 [TBL] [Abstract][Full Text] [Related]
17. Autonomous electrochemical biosensing of glial fibrillary acidic protein for point-of-care detection of central nervous system injuries. Salahandish R; Hassani M; Zare A; Haghayegh F; Sanati-Nezhad A Lab Chip; 2022 Apr; 22(8):1542-1555. PubMed ID: 35297932 [TBL] [Abstract][Full Text] [Related]