These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33492941)

  • 1. High-Performance, Thermal Cycling Stable, Coking-Tolerant Solid Oxide Fuel Cells with Nanostructured Electrodes.
    Zhang W; Zhou Y; Hussain AM; Song D; Miura Y; Chen Y; Luo Z; Kane N; Niu Y; Dale N; Fukuyama Y; Liu M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4993-4999. PubMed ID: 33492941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel.
    Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z
    ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support.
    Panthi D; Tsutsumi A
    Sci Rep; 2014 Aug; 4():5754. PubMed ID: 25169166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation Mechanisms of Solid Oxide Fuel Cells under Various Thermal Cycling Conditions.
    Shin JS; Saqib M; Jo M; Park K; Park KM; Ahn JS; Lim HT; Park JY
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):49868-49878. PubMed ID: 34643391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the Origin of the Limiting Process in a Double Perovskite PrBa
    Anjum U; Khan TS; Agarwal M; Haider MA
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25243-25253. PubMed ID: 31260249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Sputtered, Superior Power Density Thin-Film Solid Oxide Fuel Cells with a Novel Nanofibrous Ceramic Cathode.
    Lee YH; Ren H; Wu EA; Fullerton EE; Meng YS; Minh NQ
    Nano Lett; 2020 May; 20(5):2943-2949. PubMed ID: 32176514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode.
    Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells.
    Zhang W; Wang H; Guan K; Meng J; Wei Z; Liu X; Meng J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):461-473. PubMed ID: 31841308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells.
    Kim S; Jun A; Kwon O; Kim J; Yoo S; Jeong HY; Shin J; Kim G
    ChemSusChem; 2015 Sep; 8(18):3153-8. PubMed ID: 26227300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La
    Chen K; Li N; Ai N; Cheng Y; Rickard WD; Jiang SP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31729-31737. PubMed ID: 27808496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocomposite Catalyst for High-Performance and Durable Intermediate-Temperature Methane-Fueled Metal-Supported Solid Oxide Fuel Cells.
    Liu F; Diercks D; Hussain AM; Dale N; Furuya Y; Miura Y; Fukuyama Y; Duan C
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53840-53849. PubMed ID: 36440888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of IT-SOFC by negative thermal expansion Sm
    Jia X; Lu F; Liu K; Han M; Su J; He H; Cai B
    J Phys Condens Matter; 2022 Mar; 34(18):. PubMed ID: 35090142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y
    Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP
    ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells.
    Chen Y; Gerdes K; Song X
    Sci Rep; 2016 Sep; 6():32997. PubMed ID: 27605121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-annealing of thin-film yttria stabilized zirconia electrolytes for anode-supported low-temperature solid oxide fuel cells.
    Bae J; Chang I; Kang S; Hong S; Cha SW; Kim YB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9294-9. PubMed ID: 25971054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the performance and durability of Ni/YSZ cathode for hydrogen production at high current densities via decoration with nano-sized electrocatalysts.
    Ovtar S; Tong X; Bentzen JJ; Thydén KTS; Simonsen SB; Chen M
    Nanoscale; 2019 Mar; 11(10):4394-4406. PubMed ID: 30801595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.