BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33493156)

  • 1. Episodic evolution of coadapted sets of amino acid sites in mitochondrial proteins.
    Neverov AD; Popova AV; Fedonin GG; Cheremukhin EA; Klink GV; Bazykin GA
    PLoS Genet; 2021 Jan; 17(1):e1008711. PubMed ID: 33493156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Evolution of Metazoan Mitochondrial Proteins.
    Klink GV; Bazykin GA
    Genome Biol Evol; 2017 May; 9(5):1341-1350. PubMed ID: 28595327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for detecting positive selection at single amino acid sites.
    Suzuki Y; Gojobori T
    Mol Biol Evol; 1999 Oct; 16(10):1315-28. PubMed ID: 10563013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epistasis as the primary factor in molecular evolution.
    Breen MS; Kemena C; Vlasov PK; Notredame C; Kondrashov FA
    Nature; 2012 Oct; 490(7421):535-8. PubMed ID: 23064225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring a phylogenetic approach for the detection of correlated substitutions in proteins.
    Tuff P; Darlu P
    Mol Biol Evol; 2000 Nov; 17(11):1753-9. PubMed ID: 11070062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bursts of nonsynonymous substitutions in HIV-1 evolution reveal instances of positive selection at conservative protein sites.
    Bazykin GA; Dushoff J; Levin SA; Kondrashov AS
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19396-401. PubMed ID: 17164328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic and structural analysis of mitochondrial complex I proteins.
    LiĆ² P
    Gene; 2005 Jan; 345(1):55-64. PubMed ID: 15716089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic inference of changes in amino acid propensities with single-position resolution.
    Klink GV; Kalinina OV; Bazykin GA
    PLoS Comput Biol; 2022 Feb; 18(2):e1009878. PubMed ID: 35180226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadaptive Amino Acid Convergence Rates Decrease over Time.
    Goldstein RA; Pollard ST; Shah SD; Pollock DD
    Mol Biol Evol; 2015 Jun; 32(6):1373-81. PubMed ID: 25737491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Senescence and entrenchment in evolution of amino acid sites.
    Stolyarova AV; Nabieva E; Ptushenko VV; Favorov AV; Popova AV; Neverov AD; Bazykin GA
    Nat Commun; 2020 Sep; 11(1):4603. PubMed ID: 32929079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model.
    Rodrigue N; Lartillot N
    Mol Biol Evol; 2017 Jan; 34(1):204-214. PubMed ID: 27744408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of co-evolving amino acid residues on topology of phylogenetic trees.
    Sherbakov DY; Triboy TI
    Biochemistry (Mosc); 2007 Dec; 72(12):1363-7. PubMed ID: 18205620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitions to asexuality result in excess amino acid substitutions.
    Paland S; Lynch M
    Science; 2006 Feb; 311(5763):990-2. PubMed ID: 16484491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera.
    Li Y; Zhang R; Liu S; Donath A; Peters RS; Ware J; Misof B; Niehuis O; Pfrender ME; Zhou X
    BMC Evol Biol; 2017 Dec; 17(1):269. PubMed ID: 29281964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial genetic codes evolve to match amino acid requirements of proteins.
    Swire J; Judson OP; Burt A
    J Mol Evol; 2005 Jan; 60(1):128-39. PubMed ID: 15696375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying structural and functional restraints on amino acid substitutions in evolution of proteins.
    Chelliah V; Blundell TL
    Biochemistry (Mosc); 2005 Aug; 70(8):835-40. PubMed ID: 16212538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective constraints, amino acid composition, and the rate of protein evolution.
    Tourasse NJ; Li WH
    Mol Biol Evol; 2000 Apr; 17(4):656-64. PubMed ID: 10742056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring natural selection operating on conservative and radical substitution at single amino acid sites.
    Suzuki Y
    Genes Genet Syst; 2007 Aug; 82(4):341-60. PubMed ID: 17895585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longevity and the evolution of the mitochondrial DNA-coded proteins in mammals.
    Rottenberg H
    Mech Ageing Dev; 2006 Sep; 127(9):748-60. PubMed ID: 16876233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.