These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33493156)

  • 41. Positive selection for gains of N-linked glycosylation sites in hemagglutinin during evolution of H3N2 human influenza A virus.
    Suzuki Y
    Genes Genet Syst; 2011; 86(5):287-94. PubMed ID: 22362027
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequent and widespread parallel evolution of protein sequences.
    Rokas A; Carroll SB
    Mol Biol Evol; 2008 Sep; 25(9):1943-53. PubMed ID: 18583353
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving evolutionary models for mitochondrial protein data with site-class specific amino acid exchangeability matrices.
    Dunn KA; Jiang W; Field C; Bielawski JP
    PLoS One; 2013; 8(1):e55816. PubMed ID: 23383286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase.
    Schmidt TR; Wu W; Goodman M; Grossman LI
    Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Signature of positive selection in mitochondrial DNA in Cetartiodactyla.
    Mori S; Matsunami M
    Genes Genet Syst; 2018 Sep; 93(2):65-73. PubMed ID: 29643269
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Profile comparison revealed deviation from structural constraint at the positively selected sites.
    Oda H; Ota M; Toh H
    Biosystems; 2016 Sep; 147():67-77. PubMed ID: 27443483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.
    Scheel BM; Hausdorf B
    Mol Phylogenet Evol; 2014 Jul; 76():67-74. PubMed ID: 24631858
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA.
    Rand DM; Kann LM
    Genetica; 1998; 102-103(1-6):393-407. PubMed ID: 9720291
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions.
    Zhang J
    Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimating the rate of irreversibility in protein evolution.
    Soylemez O; Kondrashov FA
    Genome Biol Evol; 2012; 4(12):1213-22. PubMed ID: 23132897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models.
    Song F; Li H; Jiang P; Zhou X; Liu J; Sun C; Vogler AP; Cai W
    Genome Biol Evol; 2016 May; 8(5):1411-26. PubMed ID: 27189999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Testing for the Occurrence of Selective Episodes During the Divergence of Otophysan Fishes: Insights from Mitogenomics.
    D'Anatro A; Giorello F; Feijoo M; Lessa EP
    J Mol Evol; 2017 Apr; 84(4):162-173. PubMed ID: 28378191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimating the influence of selection on the variable amino acid sites of the cytochrome B protein functional domains.
    McClellan DA; McCracken KG
    Mol Biol Evol; 2001 Jun; 18(6):917-25. PubMed ID: 11371579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary analysis of mitochondrially encoded proteins of toad-headed lizards, Phrynocephalus, along an altitudinal gradient.
    Jin Y; Wo Y; Tong H; Song S; Zhang L; Brown RP
    BMC Genomics; 2018 Mar; 19(1):185. PubMed ID: 29510674
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms and convergence of compensatory evolution in mammalian mitochondrial tRNAs.
    Kern AD; Kondrashov FA
    Nat Genet; 2004 Nov; 36(11):1207-12. PubMed ID: 15502829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses.
    Masta SE; Longhorn SJ; Boore JL
    Mol Phylogenet Evol; 2009 Jan; 50(1):117-28. PubMed ID: 18992830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extreme nearly neutral evolution in mitochondrial genomes of laboratory mouse strains.
    Yonezawa T; Hasegawa M
    Gene; 2014 Jan; 534(2):444-8. PubMed ID: 23954256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The tangled bank of amino acids.
    Goldstein RA; Pollock DD
    Protein Sci; 2016 Jul; 25(7):1354-62. PubMed ID: 27028523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes.
    Nabholz B; Ellegren H; Wolf JB
    Mol Biol Evol; 2013 Feb; 30(2):272-84. PubMed ID: 23071102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution.
    Adrion JR; White PS; Montooth KL
    Mol Biol Evol; 2016 Jan; 33(1):152-61. PubMed ID: 26416980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.