These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 33493195)

  • 1. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair.
    Koussa NC; Smith DJ
    PLoS Genet; 2021 Jan; 17(1):e1009322. PubMed ID: 33493195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation.
    Porcella SY; Koussa NC; Tang CP; Kramer DN; Srivastava P; Smith DJ
    PLoS Genet; 2020 May; 16(5):e1008755. PubMed ID: 32379761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin Constrains the Initiation and Elongation of DNA Replication.
    Devbhandari S; Jiang J; Kumar C; Whitehouse I; Remus D
    Mol Cell; 2017 Jan; 65(1):131-141. PubMed ID: 27989437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of enzymatic interactions during short flap human Okazaki fragment processing by two forms of human DNA polymerase δ.
    Lin SH; Wang X; Zhang S; Zhang Z; Lee EY; Lee MY
    DNA Repair (Amst); 2013 Nov; 12(11):922-35. PubMed ID: 24035200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Division of labor at the eukaryotic replication fork.
    Nick McElhinny SA; Gordenin DA; Stith CM; Burgers PM; Kunkel TA
    Mol Cell; 2008 Apr; 30(2):137-44. PubMed ID: 18439893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3'-->5' exonuclease of DNA polymerase delta can substitute for the 5' flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability.
    Jin YH; Obert R; Burgers PM; Kunkel TA; Resnick MA; Gordenin DA
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5122-7. PubMed ID: 11309502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase η contributes to genome-wide lagging strand synthesis.
    Kreisel K; Engqvist MKM; Kalm J; Thompson LJ; Boström M; Navarrete C; McDonald JP; Larsson E; Woodgate R; Clausen AR
    Nucleic Acids Res; 2019 Mar; 47(5):2425-2435. PubMed ID: 30597049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA.
    Langston LD; O'Donnell M
    J Biol Chem; 2008 Oct; 283(43):29522-31. PubMed ID: 18635534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
    Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z
    Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart.
    Guilliam TA; Yeeles JTP
    Nat Struct Mol Biol; 2020 May; 27(5):450-460. PubMed ID: 32341533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-replicative nick translation occurs on the lagging strand during prolonged depletion of DNA ligase I in Saccharomyces cerevisiae.
    Koussa NC; Smith DJ
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases.
    Holmes AM; Haber JE
    Cell; 1999 Feb; 96(3):415-24. PubMed ID: 10025407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide model for the normal eukaryotic DNA replication fork.
    Larrea AA; Lujan SA; Nick McElhinny SA; Mieczkowski PA; Resnick MA; Gordenin DA; Kunkel TA
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17674-9. PubMed ID: 20876092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork.
    Georgescu RE; Langston L; Yao NY; Yurieva O; Zhang D; Finkelstein J; Agarwal T; O'Donnell ME
    Nat Struct Mol Biol; 2014 Aug; 21(8):664-70. PubMed ID: 24997598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair.
    Brocas C; Charbonnier JB; Dhérin C; Gangloff S; Maloisel L
    DNA Repair (Amst); 2010 Oct; 9(10):1098-111. PubMed ID: 20813592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Replication Fork Progression Following Helicase-Polymerase Uncoupling in Eukaryotes.
    Taylor MRG; Yeeles JTP
    J Mol Biol; 2019 May; 431(10):2040-2049. PubMed ID: 30894292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex.
    Dmowski M; Jedrychowska M; Makiela-Dzbenska K; Denkiewicz-Kruk M; Sharma S; Chabes A; Araki H; Fijalkowska IJ
    DNA Repair (Amst); 2022 Feb; 110():103272. PubMed ID: 35038632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α.
    Liberti SE; Larrea AA; Kunkel TA
    DNA Repair (Amst); 2013 Feb; 12(2):92-6. PubMed ID: 23245696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.
    Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D
    G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.