BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 33493471)

  • 1. Corneal angiogenic privilege and its failure.
    Di Zazzo A; Gaudenzi D; Yin J; Coassin M; Fernandes M; Dana R; Bonini S
    Exp Eye Res; 2021 Mar; 204():108457. PubMed ID: 33493471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammatory corneal neovascularization: etiopathogenesis.
    Clements JL; Dana R
    Semin Ophthalmol; 2011; 26(4-5):235-45. PubMed ID: 21958169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases.
    Bock F; Maruyama K; Regenfuss B; Hos D; Steven P; Heindl LM; Cursiefen C
    Prog Retin Eye Res; 2013 May; 34():89-124. PubMed ID: 23348581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanisms of corneal neovascularization and modern options for its suppression].
    Mamikonyan VR; Pivin EA; Krakhmaleva DA
    Vestn Oftalmol; 2016; 132(4):81-87. PubMed ID: 28635927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune privilege and angiogenic privilege of the cornea.
    Cursiefen C
    Chem Immunol Allergy; 2007; 92():50-57. PubMed ID: 17264482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizons in therapy for corneal angiogenesis.
    Maddula S; Davis DK; Maddula S; Burrow MK; Ambati BK
    Ophthalmology; 2011 Mar; 118(3):591-9. PubMed ID: 21376242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphangiogenesis new mechanisms.
    Chang L; Kaipainen A; Folkman J
    Ann N Y Acad Sci; 2002 Dec; 979():111-9. PubMed ID: 12543721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbal stem cell deficiency and corneal neovascularization.
    Lim P; Fuchsluger TA; Jurkunas UV
    Semin Ophthalmol; 2009; 24(3):139-48. PubMed ID: 19437349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fibrinolysis components and angiogenesis regulation by example of burn-induced corneal neovascularization in rabbits].
    Chesnokova NB; Aĭsina RB; Mukhametova LI; Pavlenko TA; Gulin DA; Beznos OV
    Vestn Oftalmol; 2012; 128(4):62-5. PubMed ID: 22994111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin).
    Stevenson W; Cheng SF; Dastjerdi MH; Ferrari G; Dana R
    Ocul Surf; 2012 Apr; 10(2):67-83. PubMed ID: 22482468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional role of decorin in corneal neovascularization in vivo.
    Balne PK; Gupta S; Zhang J; Bristow D; Faubion M; Heil SD; Sinha PR; Green SL; Iozzo RV; Mohan RR
    Exp Eye Res; 2021 Jun; 207():108610. PubMed ID: 33940009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis).
    Azar DT
    Trans Am Ophthalmol Soc; 2006; 104():264-302. PubMed ID: 17471348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal neovascularization: updates on pathophysiology, investigations & management.
    Sharif Z; Sharif W
    Rom J Ophthalmol; 2019; 63(1):15-22. PubMed ID: 31198893
    [No Abstract]   [Full Text] [Related]  

  • 14. Corneal neovascularization.
    Nicholas MP; Mysore N
    Exp Eye Res; 2021 Jan; 202():108363. PubMed ID: 33221371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking adult neovascularization during ischemia and inflammation using Vegfr2-LacZ reporter mice.
    Heidenreich R; Murayama T; Silver M; Essl C; Asahara T; Rocken M; Breier G
    J Vasc Res; 2008; 45(5):437-44. PubMed ID: 18418002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn.
    Yoeruek E; Ziemssen F; Henke-Fahle S; Tatar O; Tura A; Grisanti S; Bartz-Schmidt KU; Szurman P;
    Acta Ophthalmol; 2008 May; 86(3):322-8. PubMed ID: 17995975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of integrin alpha5beta1 in the regulation of corneal neovascularization.
    Muether PS; Dell S; Kociok N; Zahn G; Stragies R; Vossmeyer D; Joussen AM
    Exp Eye Res; 2007 Sep; 85(3):356-65. PubMed ID: 17659277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalidomide prevents donor corneal graft neovascularization in an alkali burn model of corneal angiogenesis.
    Abbas A; Khan B; Feroze AH; Hyman GF
    J Pak Med Assoc; 2002 Oct; 52(10):476-82. PubMed ID: 12553678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules.
    Dueñas Z; Torner L; Corbacho AM; Ochoa A; Gutiérrez-Ospina G; López-Barrera F; Barrios FA; Berger P; Martínez de la Escalera G; Clapp C
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2498-505. PubMed ID: 10509642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel aspects of corneal angiogenic and lymphangiogenic privilege.
    Ellenberg D; Azar DT; Hallak JA; Tobaigy F; Han KY; Jain S; Zhou Z; Chang JH
    Prog Retin Eye Res; 2010 May; 29(3):208-48. PubMed ID: 20100589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.