BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33493619)

  • 1. Promotion of Dendritic Differentiation of Cerebellar Purkinje Cells by Ca
    Horie Y; Arame T; Hirashima N; Tanaka M
    Neuroscience; 2021 Mar; 458():87-98. PubMed ID: 33493619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the GluA2 subunit of glutamate receptors is required for the normal dendritic differentiation of cerebellar Purkinje cells.
    Tanaka M; Senda T; Hirashima N
    Neurosci Lett; 2017 Sep; 657():22-26. PubMed ID: 28774570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.
    Ohashi R; Sakata S; Naito A; Hirashima N; Tanaka M
    Dev Neurobiol; 2014 Apr; 74(4):467-80. PubMed ID: 24123915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic morphogenesis of cerebellar Purkinje cells through extension and retraction revealed by long-term tracking of living cells in vitro.
    Tanaka M; Yanagawa Y; Obata K; Marunouchi T
    Neuroscience; 2006 Aug; 141(2):663-674. PubMed ID: 16730917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice.
    Ribar TJ; Rodriguiz RM; Khiroug L; Wetsel WC; Augustine GJ; Means AR
    J Neurosci; 2000 Nov; 20(22):RC107. PubMed ID: 11069976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cgamma-deficient mice.
    Schrenk K; Kapfhammer JP; Metzger F
    Neuroscience; 2002; 110(4):675-89. PubMed ID: 11934475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendrite formation of cerebellar Purkinje cells.
    Tanaka M
    Neurochem Res; 2009 Dec; 34(12):2078-88. PubMed ID: 19821027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures.
    Tanaka M; Yanagawa Y; Hirashima N
    J Neurosci Methods; 2009 Mar; 178(1):80-6. PubMed ID: 19114056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons.
    Hansen MR; Bok J; Devaiah AK; Zha XM; Green SH
    J Neurosci Res; 2003 Apr; 72(2):169-84. PubMed ID: 12671991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters.
    Kim Y; Kim T; Rhee JK; Lee D; Tanaka-Yamamoto K; Yamamoto Y
    Brain Res; 2015 Sep; 1620():1-16. PubMed ID: 25988836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different regulation of Purkinje cell dendritic development in cerebellar slice cultures by protein kinase Calpha and -beta.
    Gundlfinger A; Kapfhammer JP; Kruse F; Leitges M; Metzger F
    J Neurobiol; 2003 Oct; 57(1):95-109. PubMed ID: 12973831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic pharmacological blockade of the Na
    Sherkhane P; Kapfhammer JP
    Eur J Neurosci; 2017 Sep; 46(5):2108-2120. PubMed ID: 28715135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells.
    Hirai H; Launey T
    J Neurosci; 2000 Jul; 20(14):5217-24. PubMed ID: 10884305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1.
    Heuer H; Mason CA
    J Neurosci; 2003 Nov; 23(33):10604-12. PubMed ID: 14627645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical analyses of DNA topoisomerase II isoforms in developing rat cerebellum.
    Tsutsui K; Tsutsui K; Hosoya O; Sano K; Tokunaga A
    J Comp Neurol; 2001 Mar; 431(2):228-39. PubMed ID: 11170002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental hypothyroxinaemia and hypothyroidism limit dendritic growth of cerebellar Purkinje cells in rat offspring: involvement of microtubule-associated protein 2 (MAP2) and stathmin.
    Wang Y; Wang Y; Dong J; Wei W; Song B; Min H; Teng W; Chen J
    Neuropathol Appl Neurobiol; 2014 Jun; 40(4):398-415. PubMed ID: 23841869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase C activity modulates dendritic differentiation of rat Purkinje cells in cerebellar slice cultures.
    Metzger F; Kapfhammer JP
    Eur J Neurosci; 2000 Jun; 12(6):1993-2005. PubMed ID: 10886339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent somatostatin gene expression is regulated by cAMP-dependent protein kinase and Ca2+-calmodulin kinase pathways.
    Sánchez-Muñoz I; Sánchez-Franco F; Vallejo M; Fernández A; Palacios N; Fernández M; Cacicedo L
    J Neurosci Res; 2010 Mar; 88(4):825-36. PubMed ID: 19859966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo.
    Mabuchi T; Kitagawa K; Kuwabara K; Takasawa K; Ohtsuki T; Xia Z; Storm D; Yanagihara T; Hori M; Matsumoto M
    J Neurosci; 2001 Dec; 21(23):9204-13. PubMed ID: 11717354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of Ca²⁺/calmodulin-dependent protein kinase II on insulin gene expression in MIN6 cells.
    Suefuji M; Furukawa N; Matsumoto K; Oiso H; Shimoda S; Yoshinaga T; Matsuyama R; Miyagawa K; Kondo T; Kawashima J; Tsuruzoe K; Araki E
    Biochem Biophys Res Commun; 2012 May; 421(4):801-7. PubMed ID: 22554507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.