These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33493869)

  • 1. Structural stability of novel composite heart valve prostheses - Fatigue and wear performance.
    Zhou H; Wu L; Wu Q
    Biomed Pharmacother; 2021 Apr; 136():111288. PubMed ID: 33493869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Clinically Relevant Elliptical Deformations on the Damage Patterns of Sagging and Stretched Leaflets in a Bioprosthetic Heart Valve.
    Sritharan D; Fathi P; Weaver JD; Retta SM; Wu C; Duraiswamy N
    Cardiovasc Eng Technol; 2018 Sep; 9(3):351-364. PubMed ID: 29948838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behaviors of high-strength fabric composite membrane designed for cardiac valve prosthesis replacement.
    Zhou H; Wu Q; Wu L; Zhao Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105863. PubMed ID: 37116312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyurethane heart valve durability: effects of leaflet thickness and material.
    Bernacca GM; Mackay TG; Gulbransen MJ; Donn AW; Wheatley DJ
    Int J Artif Organs; 1997 Jun; 20(6):327-31. PubMed ID: 9259209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of polyurethane heart valves: effects on fatigue life and calcification.
    Bernacca GM; Wheatley DJ
    Int J Artif Organs; 1998 Dec; 21(12):814-9. PubMed ID: 9988359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions.
    Affatato S; Bersaglia G; Rocchi M; Taddei P; Fagnano C; Toni A
    Biomaterials; 2005 Jun; 26(16):3259-67. PubMed ID: 15603821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber heart valve prosthesis: influence of the fabric construction parameters on the valve fatigue performances.
    Vaesken A; Heim F; Chakfe N
    J Mech Behav Biomed Mater; 2014 Dec; 40():69-74. PubMed ID: 25201184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Sequentially-irradiated and Annealed Highly Cross-linked Polyethylene Inserts Thinner than Eight-millimeters Be Utilized in Total Knee Arthroplasty?
    Sayeed SA; Jauregui JJ; Korduba LA; Essner A; Harwin SF; Delanois RE; Mont MA
    Surg Technol Int; 2015 May; 26():329-35. PubMed ID: 26055028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Sep; 15(5):710-5. PubMed ID: 17044379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro function and durability of a polyurethane heart valve: material considerations.
    Bernacca GM; Mackay TG; Wheatley DJ
    J Heart Valve Dis; 1996 Sep; 5(5):538-42. PubMed ID: 8894995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure.
    Bernacca GM; Mackay TG; Wilkinson R; Wheatley DJ
    J Biomed Mater Res; 1997 Mar; 34(3):371-9. PubMed ID: 9086407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Textile for heart valve prostheses: fabric long-term durability testing.
    Heim F; Durand B; Chakfe N
    J Biomed Mater Res B Appl Biomater; 2010 Jan; 92(1):68-77. PubMed ID: 19802833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do material properties influence wear and fracture mechanisms?
    Rimnac C; Pruitt L;
    J Am Acad Orthop Surg; 2008; 16 Suppl 1():S94-100. PubMed ID: 18612023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane: material for the next generation of heart valve prostheses?
    Wheatley DJ; Raco L; Bernacca GM; Sim I; Belcher PR; Boyd JS
    Eur J Cardiothorac Surg; 2000 Apr; 17(4):440-8. PubMed ID: 10773568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synthetic leaflet heart valve with improved opening characteristics.
    Leat ME; Fisher J
    Med Eng Phys; 1994 Nov; 16(6):470-6. PubMed ID: 7858778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Suitability of Carbon Nanotube Reinforced Polymer in Transcatheter Valve Applications.
    Rozeik MM; Wheatley DJ; Gourlay T
    Cardiovasc Eng Technol; 2017 Sep; 8(3):357-367. PubMed ID: 28623503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Jul; 15(4):557-62. PubMed ID: 16901054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new design for polyurethane heart valves.
    Butterfield M; Wheatley DJ; Williams DF; Fisher J
    J Heart Valve Dis; 2001 Jan; 10(1):105-10. PubMed ID: 11206756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New polyurethane heart valve prosthesis: design, manufacture and evaluation.
    Mackay TG; Wheatley DJ; Bernacca GM; Fisher AC; Hindle CS
    Biomaterials; 1996 Oct; 17(19):1857-63. PubMed ID: 8889065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E.
    Oral E; Christensen SD; Malhi AS; Wannomae KK; Muratoglu OK
    J Arthroplasty; 2006 Jun; 21(4):580-91. PubMed ID: 16781413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.