These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33493911)

  • 1. Fuel cells for carbon capture applications.
    Abdelkareem MA; Lootah MA; Sayed ET; Wilberforce T; Alawadhi H; Yousef BAA; Olabi AG
    Sci Total Environ; 2021 May; 769():144243. PubMed ID: 33493911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.
    Lan R; Tao S
    Sci Adv; 2016 Aug; 2(8):e1600772. PubMed ID: 27540588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning carbon dioxide into fuel.
    Jiang Z; Xiao T; Kuznetsov VL; Edwards PP
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3343-64. PubMed ID: 20566515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC).
    Djellali M; Kameche M; Kebaili H; Bouhent MM; Benhamou A
    Environ Technol; 2021 Jan; 42(3):492-504. PubMed ID: 31223060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectrochemical systems using microalgae - A concise research update.
    Saratale RG; Kuppam C; Mudhoo A; Saratale GD; Periyasamy S; Zhen G; Koók L; Bakonyi P; Nemestóthy N; Kumar G
    Chemosphere; 2017 Jun; 177():35-43. PubMed ID: 28284115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating algae for CO
    Alami AH; Alasad S; Ali M; Alshamsi M
    Sci Total Environ; 2021 Mar; 759():143529. PubMed ID: 33229076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Perspectives on Fuel Cell Technology: A Brief Review.
    Sazali N; Wan Salleh WN; Jamaludin AS; Mhd Razali MN
    Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32414160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges in developing direct carbon fuel cells.
    Jiang C; Ma J; Corre G; Jain SL; Irvine JTS
    Chem Soc Rev; 2017 May; 46(10):2889-2912. PubMed ID: 28422193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate.
    Deng B; Tang J; Mao X; Song Y; Zhu H; Xiao W; Wang D
    Environ Sci Technol; 2016 Oct; 50(19):10588-10595. PubMed ID: 27602783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology.
    Bhui B; Vairakannu P
    J Environ Manage; 2019 Feb; 231():1241-1256. PubMed ID: 30602249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental aspects of fuel cells: A review.
    Abdelkareem MA; Elsaid K; Wilberforce T; Kamil M; Sayed ET; Olabi A
    Sci Total Environ; 2021 Jan; 752():141803. PubMed ID: 32889267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The need for nano-scale modeling in solid oxide fuel cells.
    Ryan EM; Recknagle KP; Liu W; Khaleel MA
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6758-68. PubMed ID: 22962819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrochemical systems: Sustainable bio-energy powerhouses.
    Gul MM; Ahmad KS
    Biosens Bioelectron; 2019 Oct; 142():111576. PubMed ID: 31412313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of biodiesel from microalgae through biological carbon capture: a review.
    Mondal M; Goswami S; Ghosh A; Oinam G; Tiwari ON; Das P; Gayen K; Mandal MK; Halder GN
    3 Biotech; 2017 Jun; 7(2):99. PubMed ID: 28560639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation.
    Al Sadat WI; Archer LA
    Sci Adv; 2016 Jul; 2(7):e1600968. PubMed ID: 27453949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in carbon capture technologies.
    Wilberforce T; Olabi AG; Sayed ET; Elsaid K; Abdelkareem MA
    Sci Total Environ; 2021 Mar; 761():143203. PubMed ID: 33199019
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.