BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33494006)

  • 1. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective.
    Bhatia SK; Otari SV; Jeon JM; Gurav R; Choi YK; Bhatia RK; Pugazhendhi A; Kumar V; Rajesh Banu J; Yoon JJ; Choi KY; Yang YH
    Bioresour Technol; 2021 Apr; 326():124733. PubMed ID: 33494006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An environmental and economic assessment of bioplastic from urban biowaste. The example of polyhydroxyalkanoate.
    Andreasi Bassi S; Boldrin A; Frenna G; Astrup TF
    Bioresour Technol; 2021 May; 327():124813. PubMed ID: 33582519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix.
    Korkakaki E; Mulders M; Veeken A; Rozendal R; van Loosdrecht MC; Kleerebezem R
    Water Res; 2016 Jun; 96():74-83. PubMed ID: 27019467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.
    Amulya K; Jukuri S; Venkata Mohan S
    Bioresour Technol; 2015; 188():231-9. PubMed ID: 25682477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.
    Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A
    Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus.
    Morgan-Sagastume F; Karlsson A; Johansson P; Pratt S; Boon N; Lant P; Werker A
    Water Res; 2010 Oct; 44(18):5196-211. PubMed ID: 20638096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation.
    García-Depraect O; Lebrero R; Rodriguez-Vega S; Börner RA; Börner T; Muñoz R
    Bioresour Technol; 2022 Sep; 360():127655. PubMed ID: 35870672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas.
    Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F
    Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA).
    Roibás-Rozas A; Val Del Rio A; Hospido A; Mosquera-Corral A
    Bioresour Technol; 2021 Aug; 334():124964. PubMed ID: 33958271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches.
    Chalima A; de Castro LF; Burgstaller L; Sampaio P; Carolas AL; Gildemyn S; Velghe F; Ferreira BS; Pais C; Neureiter M; Dietrich T; Topakas E
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives.
    De Donno Novelli L; Moreno Sayavedra S; Rene ER
    Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile fatty acid platform - a cornerstone for the circular bioeconomy.
    Velghe F; De Wilde F; Snellinx S; Farahbakhsh S; Belderbos E; Peral C; Wiedemann A; Hiessl S; Michels J; Pierrard MA; Dietrich T
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater.
    Ahuja V; Singh PK; Mahata C; Jeon JM; Kumar G; Yang YH; Bhatia SK
    Microb Cell Fact; 2024 Jul; 23(1):187. PubMed ID: 38951813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards biodegradable polyhydroxyalkanoate production from wood waste: Using volatile fatty acids as conversion medium.
    Li D; Yin F; Ma X
    Bioresour Technol; 2020 Mar; 299():122629. PubMed ID: 31881436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia.
    Burniol-Figols A; Varrone C; Le SB; Daugaard AE; Skiadas IV; Gavala HN
    Water Res; 2018 Jun; 136():180-191. PubMed ID: 29505919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A review on polyhydroxyalkanoates synthesis in activated sludge system: the effects of dissolved organic compounds by using anaerobic fermentation liquid from waste activated sludge].
    Dong J; Fang F; Zhang J; Xu R; Weng J; Cao J
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):149-162. PubMed ID: 33501797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.