These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33494041)
21. Quantitative structure-activity relationships for chemical toxicity to environmental bacteria. Blum DJ; Speece RE Ecotoxicol Environ Saf; 1991 Oct; 22(2):198-224. PubMed ID: 1769352 [TBL] [Abstract][Full Text] [Related]
22. Electrochemical Reduction of Halogenated Alkanes and Alkenes Using Activated Carbon-Based Cathodes. King JF; Mitch WA Environ Sci Technol; 2022 Dec; 56(24):17965-17976. PubMed ID: 36459429 [TBL] [Abstract][Full Text] [Related]
24. Abiotic reduction of nitroaromatic compounds by aqueous iron(ll)-catechol complexes. Naka D; Kim D; Strathmann TJ Environ Sci Technol; 2006 May; 40(9):3006-12. PubMed ID: 16719104 [TBL] [Abstract][Full Text] [Related]
25. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon. Gong W; Liu X; Gao D; Yu Y; Fu W; Cheng D; Cui B; Bai J Chemosphere; 2015 Jan; 119():835-840. PubMed ID: 25222622 [TBL] [Abstract][Full Text] [Related]
26. Structure-toxicity relationships for aliphatic compounds encompassing a variety of mechanisms of toxic action to Vibrio fischeri. Croni MT; Bowers GS; Sinks GD; Schultz TW SAR QSAR Environ Res; 2000; 11(3-4):301-12. PubMed ID: 10969877 [TBL] [Abstract][Full Text] [Related]
27. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Papa E; van der Wal L; Arnot JA; Gramatica P Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825 [TBL] [Abstract][Full Text] [Related]
28. Development of Prediction Models for the Reactivity of Organic Compounds with Ozone in Aqueous Solution by Quantum Chemical Calculations: The Role of Delocalized and Localized Molecular Orbitals. Lee M; Zimmermann-Steffens SG; Arey JS; Fenner K; von Gunten U Environ Sci Technol; 2015 Aug; 49(16):9925-35. PubMed ID: 26121114 [TBL] [Abstract][Full Text] [Related]
29. QSAR study of the reduction of nitroaromatics by Fe(II) species. Colón D; Weber EJ; Anderson JL Environ Sci Technol; 2006 Aug; 40(16):4976-82. PubMed ID: 16955895 [TBL] [Abstract][Full Text] [Related]
30. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways. Li C; Zheng S; Li T; Chen J; Zhou J; Su L; Zhang YN; Crittenden JC; Zhu S; Zhao Y Water Res; 2019 Mar; 151():468-477. PubMed ID: 30640160 [TBL] [Abstract][Full Text] [Related]
31. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals. Bradbury SP; Russom CL; Ankley GT; Schultz TW; Walker JD Environ Toxicol Chem; 2003 Aug; 22(8):1789-98. PubMed ID: 12924578 [TBL] [Abstract][Full Text] [Related]
32. Development of quantitative structure activity relationships (QSARs) for predicting the aggregation of TiO Lee J Heliyon; 2024 Apr; 10(7):e27966. PubMed ID: 38571612 [TBL] [Abstract][Full Text] [Related]
33. Influence of organic ligands on the reduction of polyhalogenated alkanes by iron(II). Bussan AL; Strathmann TJ Environ Sci Technol; 2007 Oct; 41(19):6740-7. PubMed ID: 17969689 [TBL] [Abstract][Full Text] [Related]
34. Prediction of reaction rate constants of hydroxyl radical with chemicals in water. Yu X; Liu J Water Environ Res; 2021 Jun; 93(6):934-939. PubMed ID: 33249688 [TBL] [Abstract][Full Text] [Related]
35. Does electron-correlation has any role in the quantitative structure-activity relationships? Vikas ; Reenu ; Chayawan J Mol Graph Model; 2013 May; 42():7-16. PubMed ID: 23501159 [TBL] [Abstract][Full Text] [Related]
36. Quantum chemistry based quantitative structure-activity relationships for modeling the (sub)acute toxicity of substituted mononitrobenzenes in aquatic systems. Zvinavashe E; Murk AJ; Vervoort J; Soffers AE; Freidig A; Rietjens IM Environ Toxicol Chem; 2006 Sep; 25(9):2313-21. PubMed ID: 16986785 [TBL] [Abstract][Full Text] [Related]
37. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose. Gupta S; Basant N; Singh KP Ecotoxicology; 2015 May; 24(4):873-86. PubMed ID: 25707485 [TBL] [Abstract][Full Text] [Related]
38. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Papa E; Dearden JC; Gramatica P Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926 [TBL] [Abstract][Full Text] [Related]
39. Quantitative structure-activity relationships for biodegradation. Parsons JR; Govers HA Ecotoxicol Environ Saf; 1990 Apr; 19(2):212-27. PubMed ID: 2186903 [TBL] [Abstract][Full Text] [Related]