These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33494041)
41. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles. Nendza M; Wenzel A Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710 [TBL] [Abstract][Full Text] [Related]
42. Improving the applicability of (Q)SARs for percutaneous penetration in regulatory risk assessment. Bouwman T; Cronin MT; Bessems JG; van de Sandt JJ Hum Exp Toxicol; 2008 Apr; 27(4):269-76. PubMed ID: 18684796 [TBL] [Abstract][Full Text] [Related]
43. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts. Hanna K; Kone T; Ruby C Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299 [TBL] [Abstract][Full Text] [Related]
44. Reactivity of alkyl polyhalides toward granular iron: development of QSARs and reactivity cross correlations for reductive dehalogenation. Cwiertny DM; Arnold WA; Kohn T; Rodenburg LA; Roberts AL Environ Sci Technol; 2010 Oct; 44(20):7928-36. PubMed ID: 20863059 [TBL] [Abstract][Full Text] [Related]
45. Exploring the QSAR's predictive truthfulness of the novel N-tuple discrete derivative indices on benchmark datasets. Martínez-Santiago O; Marrero-Ponce Y; Vivas-Reyes R; Rivera-Borroto OM; Hurtado E; Treto-Suarez MA; Ramos Y; Vergara-Murillo F; Orozco-Ugarriza ME; Martínez-López Y SAR QSAR Environ Res; 2017 May; 28(5):367-389. PubMed ID: 28590848 [TBL] [Abstract][Full Text] [Related]
46. QSARs for estimating intrinsic hepatic clearance of organic chemicals in humans. Pirovano A; Brandmaier S; Huijbregts MA; Ragas AM; Veltman K; Hendriks AJ Environ Toxicol Pharmacol; 2016 Mar; 42():190-7. PubMed ID: 26874337 [TBL] [Abstract][Full Text] [Related]
47. QSARs in ecotoxicological risk assessment. de Roode D; Hoekzema C; de Vries-Buitenweg S; van de Waart B; van der Hoeven J Regul Toxicol Pharmacol; 2006 Jun; 45(1):24-35. PubMed ID: 16529851 [TBL] [Abstract][Full Text] [Related]
48. Machine Learning-Assisted QSAR Models on Contaminant Reactivity Toward Four Oxidants: Combining Small Data Sets and Knowledge Transfer. Zhong S; Zhang Y; Zhang H Environ Sci Technol; 2022 Jan; 56(1):681-692. PubMed ID: 34908403 [TBL] [Abstract][Full Text] [Related]
49. Relating molecular descriptors to frontier orbital energy levels, singlet and triplet excited states of fused tricyclics using machine learning. Woon KL; Chong ZX; Ariffin A; Chan CS J Mol Graph Model; 2021 Jun; 105():107891. PubMed ID: 33765526 [TBL] [Abstract][Full Text] [Related]
50. Quantitative structure-activity relationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation. Dimitriou-Christidis P; Autenrieth RL; Abraham MH Environ Toxicol Chem; 2008 Jul; 27(7):1496-504. PubMed ID: 18366261 [TBL] [Abstract][Full Text] [Related]
51. QSARs for PBPK modelling of environmental contaminants. Peyret T; Krishnan K SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145 [TBL] [Abstract][Full Text] [Related]
52. Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. Zhang H; Weber EJ Environ Sci Technol; 2009 Feb; 43(4):1042-8. PubMed ID: 19320155 [TBL] [Abstract][Full Text] [Related]
53. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide. Salter-Blanc AJ; Bylaska EJ; Lyon MA; Ness SC; Tratnyek PG Environ Sci Technol; 2016 May; 50(10):5094-102. PubMed ID: 27074054 [TBL] [Abstract][Full Text] [Related]
54. One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter. Arnold WA Environ Sci Process Impacts; 2014 Apr; 16(4):832-8. PubMed ID: 24252992 [TBL] [Abstract][Full Text] [Related]
55. Development of QSARs for parameterizing Physiology Based ToxicoKinetic models. Sarigiannis DΑ; Papadaki K; Kontoroupis P; Karakitsios SP Food Chem Toxicol; 2017 Aug; 106(Pt A):114-124. PubMed ID: 28522333 [TBL] [Abstract][Full Text] [Related]
56. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives. Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219 [TBL] [Abstract][Full Text] [Related]
57. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
58. Origins of Selective Oxidation in Carbon-Based Nonradical Oxidation Processes toward Organic Pollutants: Quantitative Structure-Activity Relationships (QSARs). Zhang P; Sun M; Zhou C; He CS; Liu Y; Zhang H; Xiong Z; Liu W; Zhou P; Lai B Environ Sci Technol; 2024 Mar; 58(10):4781-4791. PubMed ID: 38410972 [TBL] [Abstract][Full Text] [Related]
59. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis. Schultz TW; Cronin MT; Netzeva TI; Aptula AO Chem Res Toxicol; 2002 Dec; 15(12):1602-9. PubMed ID: 12482243 [TBL] [Abstract][Full Text] [Related]
60. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches. de Morais E Silva L; Alves MF; Scotti L; Lopes WS; Scotti MT Ecotoxicol Environ Saf; 2018 May; 153():151-159. PubMed ID: 29427976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]