These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33494041)
61. Quantitative structure-activity relationships for primary aerobic biodegradation of organic chemicals in pristine surface waters: starting points for predicting biodegradation under acclimatization. Nolte TM; Pinto-Gil K; Hendriks AJ; Ragas AMJ; Pastor M Environ Sci Process Impacts; 2018 Jan; 20(1):157-170. PubMed ID: 29192704 [TBL] [Abstract][Full Text] [Related]
62. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Arp HPH; Brown TN; Berger U; Hale SE Environ Sci Process Impacts; 2017 Jul; 19(7):939-955. PubMed ID: 28628174 [TBL] [Abstract][Full Text] [Related]
63. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Neumann A; Hofstetter TB; Lüssi M; Cirpka OA; Petit S; Schwarzenbach RP Environ Sci Technol; 2008 Nov; 42(22):8381-7. PubMed ID: 19068821 [TBL] [Abstract][Full Text] [Related]
64. In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Mansouri K; Judson RS Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474 [TBL] [Abstract][Full Text] [Related]
65. QSARs to predict adsorption affinity of organic micropollutants for activated carbon and β-cyclodextrin polymer adsorbents. Ling Y; Klemes MJ; Steinschneider S; Dichtel WR; Helbling DE Water Res; 2019 May; 154():217-226. PubMed ID: 30798176 [TBL] [Abstract][Full Text] [Related]
66. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
67. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna. Reenu ; Vikas J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798 [TBL] [Abstract][Full Text] [Related]
68. A review of quantitative structure-activity relationship methods for the prediction of atmospheric oxidation of organic chemicals. Meylan WM; Howard PH Environ Toxicol Chem; 2003 Aug; 22(8):1724-32. PubMed ID: 12924573 [TBL] [Abstract][Full Text] [Related]
69. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related]
70. Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms. Tentscher PR; Lee M; von Gunten U Acc Chem Res; 2019 Mar; 52(3):605-614. PubMed ID: 30829468 [TBL] [Abstract][Full Text] [Related]
71. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships. Schultz TW; Cronin MT Environ Toxicol Chem; 2003 Mar; 22(3):599-607. PubMed ID: 12627648 [TBL] [Abstract][Full Text] [Related]
72. Variability of nitrogen isotope fractionation during the reduction of nitroaromatic compounds with dissolved reductants. Hartenbach AE; Hofstetter TB; Aeschbacher M; Sander M; Kim D; Strathmann TJ; Arnold WA; Cramer CJ; Schwarzenbach RP Environ Sci Technol; 2008 Nov; 42(22):8352-9. PubMed ID: 19068817 [TBL] [Abstract][Full Text] [Related]
73. Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs. Netzeva TI; Aptula AO; Benfenati E; Cronin MT; Gini G; Lessigiarska I; Maran U; Vracko M; Schüürmann G J Chem Inf Model; 2005; 45(1):106-14. PubMed ID: 15667135 [TBL] [Abstract][Full Text] [Related]
74. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment. Benigni R; Passerini L Mutat Res; 2002 Jul; 511(3):191-206. PubMed ID: 12088717 [TBL] [Abstract][Full Text] [Related]
75. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments. Comber MH; Walker JD; Watts C; Hermens J Environ Toxicol Chem; 2003 Aug; 22(8):1822-8. PubMed ID: 12924581 [TBL] [Abstract][Full Text] [Related]
76. A Monte Carlo method based QSPR model for prediction of reaction rate constants of hydrated electrons with organic contaminants. Ahmadi S; Lotfi S; Kumar P SAR QSAR Environ Res; 2020 Dec; 31(12):935-950. PubMed ID: 33179988 [TBL] [Abstract][Full Text] [Related]
77. Reduction rate constants for nitroaromatic compounds estimated from adiabatic electron affinities. Phillips KL; Chiu PC; Sandler SI Environ Sci Technol; 2010 Oct; 44(19):7431-6. PubMed ID: 20822125 [TBL] [Abstract][Full Text] [Related]
78. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Cronin MT; Gregory BW; Schultz TW Chem Res Toxicol; 1998 Aug; 11(8):902-8. PubMed ID: 9705752 [TBL] [Abstract][Full Text] [Related]
79. The Monte Carlo technique as a tool to predict LOAEL. Veselinović JB; Veselinović AM; Toropova AP; Toropov AA Eur J Med Chem; 2016 Jun; 116():71-75. PubMed ID: 27060758 [TBL] [Abstract][Full Text] [Related]
80. Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor. Piir G; Sild S; Maran U SAR QSAR Environ Res; 2013; 24(3):175-99. PubMed ID: 23410132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]