These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33494041)
81. Prediction of immobilised artificial membrane chromatography retention factors using theoretical molecular fragments and structural features. Ledbetter MR; Gutsell S; Hodges G; O'Connor S; Madden JC; Rowe PH; Cronin MT SAR QSAR Environ Res; 2013 Aug; 24(8):661-78. PubMed ID: 23724974 [TBL] [Abstract][Full Text] [Related]
82. Health-effects related structure-toxicity relationships: a paradigm for the first decade of the new millennium. Schultz TW; Seward JR Sci Total Environ; 2000 Apr; 249(1-3):73-84. PubMed ID: 10813448 [TBL] [Abstract][Full Text] [Related]
83. Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries. Jung B; Batchelor B J Hazard Mater; 2008 Mar; 152(1):62-70. PubMed ID: 17707584 [TBL] [Abstract][Full Text] [Related]
84. A DFT-based QSARs study of protoporphyrinogen oxidase inhibitors: phenyl triazolinones. Zhang L; Wan J; Yang G Bioorg Med Chem; 2004 Dec; 12(23):6183-91. PubMed ID: 15519162 [TBL] [Abstract][Full Text] [Related]
85. QSARS for toxicity to the bacterium Sinorhizobium meliloti. Lessigiarska I; Cronin MT; Worth AP; Dearden JC; Netzeva TI SAR QSAR Environ Res; 2004 Jun; 15(3):169-90. PubMed ID: 15293545 [TBL] [Abstract][Full Text] [Related]
86. Multi-Endpoint Acute Toxicity Assessment of Organic Compounds Using Large-Scale Machine Learning Modeling. Daghighi A; Casanola-Martin GM; Iduoku K; Kusic H; González-Díaz H; Rasulev B Environ Sci Technol; 2024 Jun; 58(23):10116-10127. PubMed ID: 38797941 [TBL] [Abstract][Full Text] [Related]
87. Report of the workshop on the validation of QSARs and other computational prediction models. Worth AP; Cronin MT Altern Lab Anim; 2004 Jun; 32 Suppl 1B():703-6. PubMed ID: 23581163 [TBL] [Abstract][Full Text] [Related]
88. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094 [TBL] [Abstract][Full Text] [Related]
89. Multiple machine learning algorithms assisted QSPR models for aqueous solubility: Comprehensive assessment with CRITIC-TOPSIS. Zhu T; Chen Y; Tao C Sci Total Environ; 2023 Jan; 857(Pt 2):159448. PubMed ID: 36252662 [TBL] [Abstract][Full Text] [Related]
90. QSAR analysis of the toxicity of aromatic compounds to Chlorella vulgaris in a novel short-term assay. Netzeva TI; Dearden JC; Edwards R; Worgan AD; Cronin MT J Chem Inf Comput Sci; 2004; 44(1):258-65. PubMed ID: 14741035 [TBL] [Abstract][Full Text] [Related]
91. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software. Achary PG SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837 [TBL] [Abstract][Full Text] [Related]
92. A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminants. Zhong S; Hu J; Fan X; Yu X; Zhang H J Hazard Mater; 2020 Feb; 383():121141. PubMed ID: 31610411 [TBL] [Abstract][Full Text] [Related]
93. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review. Mamy L; Patureau D; Barriuso E; Bedos C; Bessac F; Louchart X; Martin-Laurent F; Miege C; Benoit P Crit Rev Environ Sci Technol; 2015 Jun; 45(12):1277-1377. PubMed ID: 25866458 [TBL] [Abstract][Full Text] [Related]
94. Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity. Patlewicz G; Rodford R; Walker JD Environ Toxicol Chem; 2003 Aug; 22(8):1885-93. PubMed ID: 12924587 [TBL] [Abstract][Full Text] [Related]
95. Monte Carlo-based quantitative structure-activity relationship models for toxicity of organic chemicals to Daphnia magna. Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Leszczynska D; Leszczynski J Environ Toxicol Chem; 2016 Nov; 35(11):2691-2697. PubMed ID: 27110865 [TBL] [Abstract][Full Text] [Related]
96. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559 [TBL] [Abstract][Full Text] [Related]
97. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe(II) oxidation in marine environments. Benaiges-Fernandez R; Offeddu FG; Margalef-Marti R; Palau J; Urmeneta J; Carrey R; Otero N; Cama J Chemosphere; 2020 Dec; 260():127554. PubMed ID: 32688313 [TBL] [Abstract][Full Text] [Related]
98. Guidelines for developing and using quantitative structure-activity relationships. Walker JD; Jaworska J; Comber MH; Schultz TW; Dearden JC Environ Toxicol Chem; 2003 Aug; 22(8):1653-65. PubMed ID: 12924568 [TBL] [Abstract][Full Text] [Related]
99. Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study. Ren S Chemosphere; 2003 Dec; 53(9):1053-65. PubMed ID: 14512109 [TBL] [Abstract][Full Text] [Related]
100. QSPR modeling of the water solubility of diverse functional aliphatic compounds by optimization of correlation weights of local graph invariants. Roy K; Toropov AA J Mol Model; 2005 Mar; 11(2):89-96. PubMed ID: 15682281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]