These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33494085)

  • 1. Ice-templated hybrid graphene oxide-graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties.
    Yang P; Tontini G; Wang J; Kinloch IA; Barg S
    Nanotechnology; 2021 May; 32(20):205601. PubMed ID: 33494085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications.
    Garcia-Bordejé E; Benito AM; Maser WK
    Adv Colloid Interface Sci; 2021 Jun; 292():102420. PubMed ID: 33934004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-compressible and mechanically stable reduced graphene oxide aerogel for wearable functional devices.
    Rathi K; Kim D
    Sci Technol Adv Mater; 2023; 24(1):2214854. PubMed ID: 37287816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure.
    Wang C; Chen X; Wang B; Huang M; Wang B; Jiang Y; Ruoff RS
    ACS Nano; 2018 Jun; 12(6):5816-5825. PubMed ID: 29757617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superelastic Ti
    Jiang D; Zhang J; Qin S; Wang Z; Usman KAS; Hegh D; Liu J; Lei W; Razal JM
    ACS Nano; 2021 Mar; 15(3):5000-5010. PubMed ID: 33635074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal, Mechanical, and Electrical Properties of Graphene Nanoplatelet/Graphene Oxide/ Polyurethane Hybrid Nanocomposite.
    Pokharel P; Lee SH; Lee DS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):211-4. PubMed ID: 26328332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for Pressure Sensors.
    Zou Y; Chen Z; Guo X; Peng Z; Yu C; Zhong W
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17858-17868. PubMed ID: 35390255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan-graphene oxide films and CO
    Frindy S; Primo A; Ennajih H; El Kacem Qaiss A; Bouhfid R; Lahcini M; Essassi EM; Garcia H; El Kadib A
    Carbohydr Polym; 2017 Jul; 167():297-305. PubMed ID: 28433166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide.
    Wang M; Zhang T; Mao D; Yao Y; Zeng X; Ren L; Cai Q; Mateti S; Li LH; Zeng X; Du G; Sun R; Chen Y; Xu JB; Wong CP
    ACS Nano; 2019 Jul; 13(7):7402-7409. PubMed ID: 31203604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal-Freeze-Casting of Poly(amidoamine)-Modified Graphene Aerogels towards CO
    Pruna A; Cárcel A; Benedito A; Giménez E
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio.
    Yan P; Brown E; Su Q; Li J; Wang J; Xu C; Zhou C; Lin D
    Small; 2017 Oct; 13(38):. PubMed ID: 28834394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide.
    Ge X; Shan Y; Wu L; Mu X; Peng H; Jiang Y
    Carbohydr Polym; 2018 Oct; 197():277-283. PubMed ID: 30007614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Fabrication of Ti
    Jiang D; Zhang J; Qin S; Hegh D; Usman KAS; Wang J; Lei W; Liu J; Razal JM
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51333-51342. PubMed ID: 34696589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naturally Dried Graphene-Based Nanocomposite Aerogels with Exceptional Elasticity and High Electrical Conductivity.
    Zhang Y; Zhang L; Zhang G; Li H
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21565-21572. PubMed ID: 29864278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Graphene Aerogel with High Mechanical Stability and Microwave Absorption Ability via Combining Surface Support of Metallic-CNTs and Interfacial Cross-Linking by Magnetic Nanoparticles.
    Qin Y; Zhang Y; Qi N; Wang Q; Zhang X; Li Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10409-10417. PubMed ID: 30776887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitectonics of RGO-Wrapped CNF/GO Aerogels with Controlled Pore Structures by PVA-Assisted Freeze-Casting Approach for Efficient Sound and Microwave Absorption.
    Zhang X; Zheng Q; Chen W; Chen Z; Chen Y; Fan Q; Li H; Liu H; Zhu S
    Chemistry; 2023 Jan; 29(2):e202202714. PubMed ID: 36168665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets.
    Kazi SN; Badarudin A; Zubir MN; Ming HN; Misran M; Sadeghinezhad E; Mehrali M; Syuhada NI
    Nanoscale Res Lett; 2015; 10():212. PubMed ID: 25995712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH Tailoring Electrical and Mechanical Behavior of Polymer-Clay-Nanotube Aerogels.
    Gawryla MD; Liu L; Grunlan JC; Schiraldi DA
    Macromol Rapid Commun; 2009 Oct; 30(19):1669-73. PubMed ID: 21638436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of highly crystalline graphene aerogels.
    Worsley MA; Pham TT; Yan A; Shin SJ; Lee JR; Bagge-Hansen M; Mickelson W; Zettl A
    ACS Nano; 2014 Oct; 8(10):11013-22. PubMed ID: 25283720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry.
    Guex LG; Sacchi B; Peuvot KF; Andersson RL; Pourrahimi AM; Ström V; Farris S; Olsson RT
    Nanoscale; 2017 Jul; 9(27):9562-9571. PubMed ID: 28664948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.