These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33494276)
1. A Paper-Based Colorimetric Aptasensor for the Detection of Gentamicin. Ramalingam S; Collier CM; Singh A Biosensors (Basel); 2021 Jan; 11(2):. PubMed ID: 33494276 [TBL] [Abstract][Full Text] [Related]
2. Selection of Aptamers Specific for DEHP Based on ssDNA Library Immobilized SELEX and Development of Electrochemical Impedance Spectroscopy Aptasensor. Lu Q; Liu X; Hou J; Yuan Q; Li Y; Chen S Molecules; 2020 Feb; 25(3):. PubMed ID: 32050451 [TBL] [Abstract][Full Text] [Related]
3. Optical and Electrochemical Aptasensors for Sensitive Detection of Streptomycin in Blood Serum and Milk. Ramezani M; Abnous K; Taghdisi SM Methods Mol Biol; 2017; 1572():403-420. PubMed ID: 28299702 [TBL] [Abstract][Full Text] [Related]
4. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Abnous K; Danesh NM; Ramezani M; Emrani AS; Taghdisi SM Biosens Bioelectron; 2016 Apr; 78():80-86. PubMed ID: 26599477 [TBL] [Abstract][Full Text] [Related]
5. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. Zheng H; Li Y; Xu J; Bie J; Liu X; Guo J; Luo Y; Shen F; Sun C; Yu Y J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219 [TBL] [Abstract][Full Text] [Related]
6. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Lee EH; Lee SK; Kim MJ; Lee SW Food Chem; 2019 Jul; 287():205-213. PubMed ID: 30857691 [TBL] [Abstract][Full Text] [Related]
7. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Hu J; Ni P; Dai H; Sun Y; Wang Y; Jiang S; Li Z Analyst; 2015 May; 140(10):3581-6. PubMed ID: 25854313 [TBL] [Abstract][Full Text] [Related]
8. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Wang L; Musile G; McCord BR Electrophoresis; 2018 Feb; 39(3):470-475. PubMed ID: 28834613 [TBL] [Abstract][Full Text] [Related]
9. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Song KM; Jeong E; Jeon W; Cho M; Ban C Anal Bioanal Chem; 2012 Feb; 402(6):2153-61. PubMed ID: 22222912 [TBL] [Abstract][Full Text] [Related]
10. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. Hu X; Chang K; Wang S; Sun X; Hu J; Jiang M PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096 [TBL] [Abstract][Full Text] [Related]
11. Aptamer-aptamer linkage based aptasensor for highly enhanced detection of small molecules. Nguyen VT; Lee BH; Kim SH; Gu MB Biotechnol J; 2016 Jun; 11(6):843-9. PubMed ID: 27221154 [TBL] [Abstract][Full Text] [Related]
12. Selection of DNA aptamers and establishment of an effective aptasensor for highly sensitive detection of cefquinome residues in milk. Wang L; Wang C; Li H Analyst; 2018 Jun; 143(13):3202-3208. PubMed ID: 29872833 [TBL] [Abstract][Full Text] [Related]
13. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples. Javidi M; Housaindokht MR; Verdian A; Razavizadeh BM Anal Chim Acta; 2018 Dec; 1039():116-123. PubMed ID: 30322542 [TBL] [Abstract][Full Text] [Related]
14. Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Liu M; Yang Z; Li B; Du J Food Chem; 2021 Mar; 339():128059. PubMed ID: 33152864 [TBL] [Abstract][Full Text] [Related]
15. A Simple Yet Effective Preanalytical Strategy Enabling the Application of Aptamer-Conjugated Gold Nanoparticles for the Colorimetric Detection of Antibiotic Residues in Raw Milk. Díaz-García V; Contreras-Trigo B; Rodríguez C; Coelho P; Oyarzún P Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162026 [TBL] [Abstract][Full Text] [Related]
16. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. Luan Q; Gan N; Cao Y; Li T J Agric Food Chem; 2017 Jul; 65(28):5731-5740. PubMed ID: 28654744 [TBL] [Abstract][Full Text] [Related]
17. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. Chang K; Wang S; Zhang H; Guo Q; Hu X; Lin Z; Sun H; Jiang M; Hu J PLoS One; 2017; 12(5):e0177131. PubMed ID: 28475597 [TBL] [Abstract][Full Text] [Related]
18. Optical pico-biosensing of lead using plasmonic gold nanoparticles and a cationic peptide-based aptasensor. Solra M; Bala R; Wangoo N; Soni GK; Kumar M; Sharma RK Chem Commun (Camb); 2019 Dec; 56(2):289-292. PubMed ID: 31808471 [TBL] [Abstract][Full Text] [Related]
19. A triple-amplification colorimetric assay for antibiotics based on magnetic aptamer-enzyme co-immobilized platinum nanoprobes and exonuclease-assisted target recycling. Miao Y; Gan N; Ren HX; Li T; Cao Y; Hu F; Yan Z; Chen Y Analyst; 2015 Nov; 140(22):7663-71. PubMed ID: 26442572 [TBL] [Abstract][Full Text] [Related]
20. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor. Jia M; Sha J; Li Z; Wang W; Zhang H Food Chem; 2020 Jul; 317():126459. PubMed ID: 32113141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]