These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33494311)

  • 1. Acoustic Emission Detection and Analysis Method for Health Status of Lithium Ion Batteries.
    Zhang K; Yin J; He Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in acoustic techniques for evaluating defects and properties in lithium-ion batteries: A review.
    Gou Y; Yan Y; Lyu Y; Chen S; Li J; Liu Y
    Ultrasonics; 2024 Aug; 142():107400. PubMed ID: 39024791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Performance Degradation in Lithium-Ion Batteries Based on a Lumped Particle Diffusion Model.
    Fang P; Zhang A; Sui X; Wang D; Yin L; Wen Z
    ACS Omega; 2023 Sep; 8(36):32884-32891. PubMed ID: 37720804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode.
    Schweidler S; Dreyer SL; Breitung B; Brezesinski T
    Sci Rep; 2021 Dec; 11(1):23381. PubMed ID: 34862419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of 2-in-1 Sensors for the Safety Assessment of Lithium-Ion Batteries via Early Detection of Vapors Produced by Electrolyte Solvents.
    Lupan O; Magariu N; Santos-Carballal D; Ababii N; Offermann J; Pooker P; Hansen S; Siebert L; de Leeuw NH; Adelung R
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27340-27356. PubMed ID: 37233739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.
    Nayak PK; Yang L; Brehm W; Adelhelm P
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):102-120. PubMed ID: 28627780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.
    Yu C; Ganapathy S; Eck ERHV; Wang H; Basak S; Li Z; Wagemaker M
    Nat Commun; 2017 Oct; 8(1):1086. PubMed ID: 29057868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.
    Okamoto E; Watanabe K; Hashiba K; Inoue T; Iwazawa E; Momoi M; Hashimoto T; Mitamura Y
    ASAIO J; 2002; 48(5):495-502. PubMed ID: 12296569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.
    Cai W; Zhang Y; Li J; Sun Y; Cheng H
    ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance.
    Mei P; Zhang Y; Zhang W
    Nanoscale; 2023 Jan; 15(3):987-997. PubMed ID: 36541266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite.
    Lininger CN; Brady NW; West AC
    Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors.
    Chen D; Zhao Q; Zheng Y; Xu Y; Chen Y; Ni J; Zhao Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Performance and Microstructure Evolution of a Quasi-Solid-State Lithium Battery Prepared by Spark Plasma Sintering.
    Li J; Tong H; Zhou W; Liu J; Song X
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8045-8054. PubMed ID: 38316124
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Zhang YS; Pallipurath Radhakrishnan AN; Robinson JB; Owen RE; Tranter TG; Kendrick E; Shearing PR; Brett DJL
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36605-36620. PubMed ID: 34293855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode Degradation in Lithium-Ion Batteries.
    Pender JP; Jha G; Youn DH; Ziegler JM; Andoni I; Choi EJ; Heller A; Dunn BS; Weiss PS; Penner RM; Mullins CB
    ACS Nano; 2020 Feb; 14(2):1243-1295. PubMed ID: 31895532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.