BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33494413)

  • 21. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational modeling of passive furrowed channel micromixers for lab-on-a-chip applications.
    Nason F; Pennati G; Dubini G
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):278-85. PubMed ID: 24700264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Directly Moldable, Highly Compact, and Easy-for-Integration 3D Micromixer with Extraordinary Mixing Performance.
    Wang Z; Yan X; Zhou Q; Wang Q; Zhao D; Wu H
    Anal Chem; 2023 Jun; 95(23):8850-8858. PubMed ID: 37260159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application.
    Cosentino A; Madadi H; Vergara P; Vecchione R; Causa F; Netti PA
    Sci Rep; 2015 Dec; 5():17876. PubMed ID: 26658848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
    Varone A; Nguyen JK; Leng L; Barrile R; Sliz J; Lucchesi C; Wen N; Gravanis A; Hamilton GA; Karalis K; Hinojosa CD
    Biomaterials; 2021 Aug; 275():120957. PubMed ID: 34130145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design.
    Borro BC; Bohr A; Bucciarelli S; Boetker JP; Foged C; Rantanen J; Malmsten M
    J Colloid Interface Sci; 2019 Mar; 538():559-568. PubMed ID: 30551068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic chip with movable layers for the manipulation of biochemicals.
    Seder I; Kim DM; Hwang SH; Sung H; Kim DE; Kim SJ
    Lab Chip; 2018 Jun; 18(13):1867-1874. PubMed ID: 29877550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet.
    Zhou R; Surendran AN; Mejulu M; Lin Y
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31881667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a desirable hyperbolic microfluidic chip for ultrasensitive determination of PCT based on chemiluminescence.
    Yin B; Yue W; Sohan ASMMF; Wan X; Zhou T; Shi L; Qian C; Lin X
    J Mater Chem B; 2023 Mar; 11(9):1978-1986. PubMed ID: 36752153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of peristaltic micromixers for highly integrated microfluidic systems.
    Kim D; Rho HS; Jambovane S; Shin S; Hong JW
    Rev Sci Instrum; 2016 Mar; 87(3):035003. PubMed ID: 27036809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates.
    Rafeie M; Welleweerd M; Hassanzadeh-Barforoushi A; Asadnia M; Olthuis W; Ebrahimi Warkiani M
    Biomicrofluidics; 2017 Jan; 11(1):014108. PubMed ID: 28798843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel.
    Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM
    Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid three-dimensional microfluidic mixer for high viscosity solutions to unravel earlier folding kinetics of G-quadruplex under molecular crowding conditions.
    Liu C; Li Y; Li Y; Chen P; Feng X; Du W; Liu BF
    Talanta; 2016; 149():237-243. PubMed ID: 26717836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation.
    Wang H; Enders A; Preuss JA; Bahnemann J; Heisterkamp A; Torres-Mapa ML
    Sci Rep; 2021 Jul; 11(1):14584. PubMed ID: 34272408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.