These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33494413)

  • 41. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Soper SA
    Biosens Bioelectron; 2006 Apr; 21(10):1915-23. PubMed ID: 16488597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
    Farshchian B; Amirsadeghi A; Choi J; Park DS; Kim N; Park S
    Nano Converg; 2017; 4(1):4. PubMed ID: 28303213
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology.
    Akagi J; Zhu F; Hall CJ; Crosier KE; Crosier PS; Wlodkowic D
    Cytometry A; 2014 Jun; 85(6):537-47. PubMed ID: 24664821
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chim Acta; 2023 Jan; 1239():340742. PubMed ID: 36628735
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
    Verma MK; Ganneboyina SR; R VR; Ghatak A
    Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Laboratory on a microfluidic chip].
    Lin B; Qin J
    Se Pu; 2005 Sep; 23(5):456-63. PubMed ID: 16350786
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
    Chung YC; Hsu YL; Jen CP; Lu MC; Lin YC
    Lab Chip; 2004 Feb; 4(1):70-7. PubMed ID: 15007444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SMILE Platform: An Innovative Microfluidic Approach for On-Chip Sample Manipulation and Analysis in Oral Cancer Diagnosis.
    Zoupanou S; Volpe A; Primiceri E; Gaudiuso C; Ancona A; Ferrara F; Chiriacò MS
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442507
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrated Immunomagnetic Bead-Based Microfluidic Chip for Exosomes Isolation.
    Niu F; Chen X; Niu X; Cai Y; Zhang Q; Chen T; Yang H
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32429185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions.
    Kim DJ; Oh HJ; Park TH; Choo JB; Lee SH
    Analyst; 2005 Mar; 130(3):293-8. PubMed ID: 15724156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers Using the Grayscale Photolithography Technique.
    Abdul Hamid ISL; Khi Khim B; Sal Hamid S; Abd Rahman MF; Abd Manaf A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32485795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A 3D Printed Jet Mixer for Centrifugal Microfluidic Platforms.
    Wang Y; Zhang Y; Qiao Z; Wang W
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32709009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis.
    Viefhues M; Eichhorn R; Fredrich E; Regtmeier J; Anselmetti D
    Lab Chip; 2012 Feb; 12(3):485-94. PubMed ID: 22193706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.
    Jun Kang Y; Ryu J; Lee SJ
    Biomicrofluidics; 2013; 7(4):44106. PubMed ID: 24404040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D nanomolding for lab-on-a-chip applications.
    Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S
    Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles.
    Guan Y; Sun B
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications.
    Salentijn GI; Oomen PE; Grajewski M; Verpoorte E
    Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.