BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33494594)

  • 1. Polyphenols Weaken Pea Protein Gel by Formation of Large Aggregates with Diminished Noncovalent Interactions.
    Chen D; Zhu X; Ilavsky J; Whitmer T; Hatzakis E; Jones OG; Campanella OH
    Biomacromolecules; 2021 Feb; 22(2):1001-1014. PubMed ID: 33494594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pectin as a natural agent for reinforcement of pea protein gel.
    Zhang D; Chen D; Patel B; Campanella OH
    Carbohydr Polym; 2022 Dec; 298():120038. PubMed ID: 36241312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-induced pea protein isolate gels reinforced by panda bean protein amyloid fibrils: Gelling properties and formation mechanism.
    Ge J; Sun C; Chang Y; Sun M; Zhang Y; Fang Y
    Food Res Int; 2022 Dec; 162(Pt A):112053. PubMed ID: 36461267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.
    Georgiades P; Pudney PD; Rogers S; Thornton DJ; Waigh TA
    PLoS One; 2014; 9(8):e105302. PubMed ID: 25162539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Different pH Values on Gels Produced from Tea Polyphenols and Low Acyl Gellan Gum.
    Zhang F; Wang X; Guo N; Dai H; Wang Y; Sun Y; Zhu G
    Gels; 2023 Apr; 9(5):. PubMed ID: 37232960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-treatment by combining atmospheric cold plasma and pH-shifting to prepare pea protein concentrate powders with improved gelling properties.
    Zhang S; Huang W; Roopesh MS; Chen L
    Food Res Int; 2022 Apr; 154():111028. PubMed ID: 35337594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of tea saponin on the foaming properties of pea protein.
    Xie J; Huang W; Wu X
    Food Funct; 2023 May; 14(9):4339-4353. PubMed ID: 37083690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-Angle X-ray Scattering Study of Protein Complexes with Tea Polyphenols.
    Shi C; Tang H; Xiao J; Cui F; Yang K; Li J; Zhao Q; Huang Q; Li Y
    J Agric Food Chem; 2017 Jan; 65(3):656-665. PubMed ID: 28049293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing a strongly interacting Pea-Cod binary protein system by introducing metal cations toward enhanced gelling properties.
    Zou B; Zheng X; Na X; Cheng S; Qie Z; Xu X; Du M; Wu C
    Food Res Int; 2024 Feb; 178():113955. PubMed ID: 38309874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogenization improves foaming properties of insoluble pea proteins.
    Moll P; Salminen H; Griesshaber E; Schmitt C; Weiss J
    J Food Sci; 2022 Oct; 87(10):4622-4635. PubMed ID: 36103208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the physiochemical properties, microstructure, and molecular interactions of a novel rice-pea protein gel.
    Xu T; Sun X; Yan Q; Li Z; Cai W; Ding J; Fan F; Li P; Drawbridge P; Fang Y
    Food Chem; 2023 Oct; 424():136360. PubMed ID: 37207604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical and Active Properties of Gelatine-Based Composite Gels Loaded with Lysozyme and Green Tea Polyphenols.
    Boyacı D; Kavur PB; Gulec S; Yemenicioğlu A
    Food Technol Biotechnol; 2021 Sep; 59(3):337-348. PubMed ID: 34759765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of disulfide bonds in acid-induced gels of preheated whey protein isolate.
    Alting AC; Hamer RJ; de Kruif CG; Visschers RW
    J Agric Food Chem; 2000 Oct; 48(10):5001-7. PubMed ID: 11052769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking.
    Zhang X; Wang C; Qi Z; Zhao R; Wang C; Zhang T
    Food Res Int; 2022 Oct; 160():111713. PubMed ID: 36076408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of lentil protein gels from fibrillar aggregates and the gelling mechanism study.
    Jo YJ; Huang W; Chen L
    Food Funct; 2020 Nov; 11(11):10114-10125. PubMed ID: 33140804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols.
    Li H; Zhai F; Li J; Zhu X; Guo Y; Zhao B; Xu B
    Int J Biol Macromol; 2021 Jan; 166():521-528. PubMed ID: 33129907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of an Olive Leaf Polyphenol 3,4-DHPEA-EDA on Physical Properties of Food Protein Gels.
    Akazawa T; Itami H; Furumoto T; Nozaki C; Koike H; Iritani S; Amimoto N; Ogawa M
    J Agric Food Chem; 2021 Dec; 69(47):14250-14258. PubMed ID: 34730369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction between tea polyphenols and rice starch during gelatinization.
    Wu Y; Lin Q; Chen Z; Xiao H
    Food Sci Technol Int; 2011 Dec; 17(6):569-77. PubMed ID: 22158838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the "tertiary structure" of poly-carbenes; self-assembly of sp3-carbon-based polymers into liquid-crystalline aggregates.
    Franssen NM; Ensing B; Hegde M; Dingemans TJ; Norder B; Picken SJ; Alberda van Ekenstein GO; van Eck ER; Elemans JA; Vis M; Reek JN; de Bruin B
    Chemistry; 2013 Aug; 19(35):11577-89. PubMed ID: 23852805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.