These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 33494895)

  • 1. Pathogen growth when implementing 'Time as a Public Health Control'.
    Tamplin ML; Ratkowsky DA
    Food Microbiol; 2021 Jun; 96():103718. PubMed ID: 33494895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling and validation of Salmonella enterica growth in sushi exposed to different time-temperature scenarios found in real sushi establishments.
    da Silva DC; Lopes SM; de Aquino NSM; Elias SO; Duda HA; Tondo EC
    Food Res Int; 2020 Oct; 136():109609. PubMed ID: 32846629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiological safety evaluations and recommendations on sprouted seeds. National Advisory Committee on Microbiological Criteria for Foods.
    Int J Food Microbiol; 1999 Nov; 52(3):123-53. PubMed ID: 10733245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information systems in food safety management.
    McMeekin TA; Baranyi J; Bowman J; Dalgaard P; Kirk M; Ross T; Schmid S; Zwietering MH
    Int J Food Microbiol; 2006 Dec; 112(3):181-94. PubMed ID: 16934895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments.
    Koseki S
    Int J Food Microbiol; 2009 Aug; 134(1-2):75-82. PubMed ID: 19181410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive modeling of bacterial growth in ready-to-use salted napa cabbage (Brassica pekinensis) at different storage temperatures.
    Kim HW; Lee K; Kim SH; Rhee MS
    Food Microbiol; 2018 Apr; 70():129-136. PubMed ID: 29173619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013.
    Lee YJ; Jung BS; Kim KT; Paik HD
    Meat Sci; 2015 Sep; 107():20-5. PubMed ID: 25930109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Escherichia coli O157:H7 growth in ground beef in the Greek chill chain.
    Kakagianni M; Koutsoumanis KP
    Food Res Int; 2019 Sep; 123():590-600. PubMed ID: 31285008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative risk assessment for Escherichia coli O157:H7 in ground beef hamburgers.
    Cassin MH; Lammerding AM; Todd EC; Ross W; McColl RS
    Int J Food Microbiol; 1998 May; 41(1):21-44. PubMed ID: 9631335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling transfer of Listeria monocytogenes during slicing of 'gravad' salmon.
    Aarnisalo K; Sheen S; Raaska L; Tamplin M
    Int J Food Microbiol; 2007 Aug; 118(1):69-78. PubMed ID: 17651853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial source tracking: a tool for identifying sources of microbial contamination in the food chain.
    Fu LL; Li JR
    Crit Rev Food Sci Nutr; 2014; 54(6):699-707. PubMed ID: 24345044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table.
    Koseki S; Isobe S
    Int J Food Microbiol; 2005 Oct; 104(3):239-48. PubMed ID: 15979180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.
    Nuin M; Alfaro B; Cruz Z; Argarate N; George S; Le Marc Y; Olley J; Pin C
    Int J Food Microbiol; 2008 Oct; 127(3):193-9. PubMed ID: 18692267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making it work: the application of time as a public health control in the field.
    Hislop N
    J Environ Health; 2008 Sep; 71(2):26-30, 44. PubMed ID: 18807821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal inactivation of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and a surrogate (Pediococcus acidilactici) on raisins, apricot halves, and macadamia nuts using vacuum-steam pasteurization.
    Acuff JC; Wu J; Marik C; Waterman K; Gallagher D; Huang H; Williams RC; Ponder MA
    Int J Food Microbiol; 2020 Nov; 333():108814. PubMed ID: 32805576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures.
    Hwang CA; Tamplin ML
    J Food Sci; 2007 Sep; 72(7):M246-53. PubMed ID: 17995648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce.
    Sant'Ana AS; Franco BD; Schaffner DW
    Food Microbiol; 2012 May; 30(1):267-73. PubMed ID: 22265311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inoculum size, bacterial species, type of surfaces and contact time to the transfer of foodborne pathogens from inoculated to non-inoculated beef fillets via food processing surfaces.
    Gkana E; Chorianopoulos N; Grounta A; Koutsoumanis K; Nychas GE
    Food Microbiol; 2017 Apr; 62():51-57. PubMed ID: 27889165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparison of growth models of Listeria monocytogenes in chilled pork].
    Zhang P; Liu Y; Fang C; Yu Y; Chen J; Fang W
    Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1625-31. PubMed ID: 22379803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.