These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33495354)

  • 1. Mutations in the splicing regulator Prp31 lead to retinal degeneration in
    Hebbar S; Lehmann M; Behrens S; Hälsig C; Leng W; Yuan M; Winkler S; Knust E
    Biol Open; 2021 Jan; 10(1):. PubMed ID: 33495354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.
    Colley NJ; Cassill JA; Baker EK; Zuker CS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3070-4. PubMed ID: 7708777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells.
    Yuan L; Kawada M; Havlioglu N; Tang H; Wu JY
    J Neurosci; 2005 Jan; 25(3):748-57. PubMed ID: 15659613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization.
    Iakhine R; Chorna-Ornan I; Zars T; Elia N; Cheng Y; Selinger Z; Minke B; Hyde DR
    J Neurosci; 2004 Mar; 24(10):2516-26. PubMed ID: 15014127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The splicing factor Prp31 is essential for photoreceptor development in Drosophila.
    Ray P; Luo X; Rao EJ; Basha A; Woodruff EA; Wu JY
    Protein Cell; 2010 Mar; 1(3):267-74. PubMed ID: 21203973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa.
    Berger A; Lorain S; Joséphine C; Desrosiers M; Peccate C; Voit T; Garcia L; Sahel JA; Bemelmans AP
    Mol Ther; 2015 May; 23(5):918-930. PubMed ID: 25619725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted disruption of the endogenous zebrafish
    Zelinka CP; Sotolongo-Lopez M; Fadool JM
    Mol Vis; 2018; 24():587-602. PubMed ID: 30210230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa.
    Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH
    Mol Vis; 2019; 25():462-476. PubMed ID: 31523123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin homeostasis and retinal degeneration: lessons from the fly.
    Xiong B; Bellen HJ
    Trends Neurosci; 2013 Nov; 36(11):652-60. PubMed ID: 24012059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation.
    Kang MJ; Ryoo HD
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17043-8. PubMed ID: 19805114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal degeneration caused by dominant rhodopsin mutations in Drosophila.
    Kurada P; O'Tousa JE
    Neuron; 1995 Mar; 14(3):571-9. PubMed ID: 7695903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin mutations as the cause of retinal degeneration. Classification of degeneration phenotypes in the model system Drosophila melanogaster.
    Bentrop J
    Acta Anat (Basel); 1998; 162(2-3):85-94. PubMed ID: 9831754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11).
    Vithana EN; Abu-Safieh L; Allen MJ; Carey A; Papaioannou M; Chakarova C; Al-Maghtheh M; Ebenezer ND; Willis C; Moore AT; Bird AC; Hunt DM; Bhattacharya SS
    Mol Cell; 2001 Aug; 8(2):375-81. PubMed ID: 11545739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique cell biological profiles of retinal disease-causing missense mutations in the polarity protein Crumbs.
    Pellikka M; Tepass U
    J Cell Sci; 2017 Jul; 130(13):2147-2158. PubMed ID: 28515229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA).
    Pang JJ; Chang B; Hawes NL; Hurd RE; Davisson MT; Li J; Noorwez SM; Malhotra R; McDowell JH; Kaushal S; Hauswirth WW; Nusinowitz S; Thompson DA; Heckenlively JR
    Mol Vis; 2005 Feb; 11():152-62. PubMed ID: 15765048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The manner of decay of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts derived from retinitis pigmentosa patients depends on the type of mutation.
    Seko Y; Iwanami M; Miyamoto-Matsui K; Takita S; Aoi N; Umezawa A; Kato S
    Stem Cell Res Ther; 2018 Oct; 9(1):279. PubMed ID: 30359287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model.
    Orlans HO; Barnard AR; Patrício MI; McClements ME; MacLaren RE
    Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rpe65 as a modifier gene for inherited retinal degeneration.
    Samardzija M; Wenzel A; Naash M; Remé CE; Grimm C
    Eur J Neurosci; 2006 Feb; 23(4):1028-34. PubMed ID: 16519667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration.
    Alloway PG; Howard L; Dolph PJ
    Neuron; 2000 Oct; 28(1):129-38. PubMed ID: 11086989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular genetics of retinal degeneration: A Drosophila perspective.
    Shieh BH
    Fly (Austin); 2011; 5(4):356-68. PubMed ID: 21897116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.