BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33495639)

  • 1. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA.
    Villiger L; Rothgangl T; Witzigmann D; Oka R; Lin PJC; Qi W; Janjuha S; Berk C; Ringnalda F; Beattie MB; Stoffel M; Thöny B; Hall J; Rehrauer H; van Boxtel R; Tam YK; Schwank G
    Nat Biomed Eng; 2021 Feb; 5(2):179-189. PubMed ID: 33495639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
    Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H
    Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations.
    Wang L; Xue W; Zhang H; Gao R; Qiu H; Wei J; Zhou L; Lei YN; Wu X; Li X; Liu C; Wu J; Chen Q; Ma H; Huang X; Cai C; Zhang Y; Yang B; Yin H; Yang L; Chen J
    Nat Cell Biol; 2021 May; 23(5):552-563. PubMed ID: 33972728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling Genome-Wide Specificity of dCpf1 Cytidine Base Editors Using Digenome-Seq.
    Kim D
    Methods Mol Biol; 2023; 2606():33-40. PubMed ID: 36592306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide specificity of dCpf1 cytidine base editors.
    Kim D; Lim K; Kim DE; Kim JS
    Nat Commun; 2020 Aug; 11(1):4072. PubMed ID: 32792663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing.
    Yang L; Wang L; Huo Y; Chen X; Yin S; Hu Y; Zhang X; Zheng R; Geng H; Han H; Ma X; Liu M; Li H; Yu W; Liu M; Wang J; Li D
    Mol Ther; 2020 Jul; 28(7):1673-1683. PubMed ID: 32413280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR DNA base editors with reduced RNA off-target and self-editing activities.
    Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK
    Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
    Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR
    Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain.
    Zhang X; Chen L; Zhu B; Wang L; Chen C; Hong M; Huang Y; Li H; Han H; Cai B; Yu W; Yin S; Yang L; Yang Z; Liu M; Zhang Y; Mao Z; Wu Y; Liu M; Li D
    Nat Cell Biol; 2020 Jun; 22(6):740-750. PubMed ID: 32393889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos.
    Park DS; Yoon M; Kweon J; Jang AH; Kim Y; Choi SC
    Mol Cells; 2017 Nov; 40(11):823-827. PubMed ID: 29179261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.
    Koblan LW; Doman JL; Wilson C; Levy JM; Tay T; Newby GA; Maianti JP; Raguram A; Liu DR
    Nat Biotechnol; 2018 Oct; 36(9):843-846. PubMed ID: 29813047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity.
    Yu Y; Leete TC; Born DA; Young L; Barrera LA; Lee SJ; Rees HA; Ciaramella G; Gaudelli NM
    Nat Commun; 2020 Apr; 11(1):2052. PubMed ID: 32345976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs.
    Yuan H; Yu T; Wang L; Yang L; Zhang Y; Liu H; Li M; Tang X; Liu Z; Li Z; Lu C; Chen X; Pang D; Ouyang H
    Cell Mol Life Sci; 2020 Feb; 77(4):719-733. PubMed ID: 31302752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of high-precision base editors for site-specific single nucleotide replacement.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.