BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33495639)

  • 21. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
    Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS
    Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
    Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H
    Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response.
    Wang X; Ding C; Yu W; Wang Y; He S; Yang B; Xiong YC; Wei J; Li J; Liang J; Lu Z; Zhu W; Wu J; Zhou Z; Huang X; Liu Z; Yang L; Chen J
    Cell Rep; 2020 Jun; 31(9):107723. PubMed ID: 32492431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells.
    Fauser F; Kadam BN; Arangundy-Franklin S; Davis JE; Vaidya V; Schmidt NJ; Lew G; Xia DF; Mureli R; Ng C; Zhou Y; Scarlott NA; Eshleman J; Bendaña YR; Shivak DA; Reik A; Li P; Davis GD; Miller JC
    Nat Commun; 2024 Feb; 15(1):1181. PubMed ID: 38360922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA.
    Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and Engineering of Light-Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity.
    Sun Y; Chen Q; Cheng Y; Wang X; Deng Z; Zhou F; Sun Y
    Adv Sci (Weinh); 2024 Feb; 11(5):e2305311. PubMed ID: 38039441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current Status and Challenges of DNA Base Editing Tools.
    Jeong YK; Song B; Bae S
    Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases.
    Jang H; Jo DH; Cho CS; Shin JH; Seo JH; Yu G; Gopalappa R; Kim D; Cho SR; Kim JH; Kim HH
    Nat Biomed Eng; 2022 Feb; 6(2):181-194. PubMed ID: 34446856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Split complementation of base editors to minimize off-target edits.
    Xiong X; Liu K; Li Z; Xia FN; Ruan XM; He X; Li JF
    Nat Plants; 2023 Nov; 9(11):1832-1847. PubMed ID: 37845337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and application of the transformer base editor in mammalian cells and mice.
    Han W; Gao BQ; Zhu J; He Z; Li J; Yang L; Chen J
    Nat Protoc; 2023 Nov; 18(11):3194-3228. PubMed ID: 37794072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins.
    Chen L; Park JE; Paa P; Rajakumar PD; Prekop HT; Chew YT; Manivannan SN; Chew WL
    Nat Commun; 2021 Mar; 12(1):1384. PubMed ID: 33654077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses.
    Levy JM; Yeh WH; Pendse N; Davis JR; Hennessey E; Butcher R; Koblan LW; Comander J; Liu Q; Liu DR
    Nat Biomed Eng; 2020 Jan; 4(1):97-110. PubMed ID: 31937940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient prime editing in mouse brain, liver and heart with dual AAVs.
    Davis JR; Banskota S; Levy JM; Newby GA; Wang X; Anzalone AV; Nelson AT; Chen PJ; Hennes AD; An M; Roh H; Randolph PB; Musunuru K; Liu DR
    Nat Biotechnol; 2024 Feb; 42(2):253-264. PubMed ID: 37142705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenine base editing in an adult mouse model of tyrosinaemia.
    Song CQ; Jiang T; Richter M; Rhym LH; Koblan LW; Zafra MP; Schatoff EM; Doman JL; Cao Y; Dow LE; Zhu LJ; Anderson DG; Liu DR; Yin H; Xue W
    Nat Biomed Eng; 2020 Jan; 4(1):125-130. PubMed ID: 31740768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Base editing: precision chemistry on the genome and transcriptome of living cells.
    Rees HA; Liu DR
    Nat Rev Genet; 2018 Dec; 19(12):770-788. PubMed ID: 30323312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.