These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33496264)

  • 1. Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments.
    Dutagaci B; Nawrocki G; Goodluck J; Ashkarran AA; Hoogstraten CG; Lapidus LJ; Feig M
    Elife; 2021 Jan; 10():. PubMed ID: 33496264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the physical principles of two-component biomolecular phase separation.
    Zhang Y; Xu B; Weiner BG; Meir Y; Wingreen NS
    Elife; 2021 Mar; 10():. PubMed ID: 33704061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical Timekeeping Via Reentrant Phase Transitions.
    Portz B; Shorter J
    J Mol Biol; 2021 Jun; 433(12):166794. PubMed ID: 33387533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate.
    Chou HY; Aksimentiev A
    J Phys Chem Lett; 2020 Jun; 11(12):4923-4929. PubMed ID: 32426986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model.
    Benayad Z; von Bülow S; Stelzl LS; Hummer G
    J Chem Theory Comput; 2021 Jan; 17(1):525-537. PubMed ID: 33307683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics.
    Nguyen HT; Hori N; Thirumalai D
    Nat Chem; 2022 Jul; 14(7):775-785. PubMed ID: 35501484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes.
    Cummings CS; Obermeyer AC
    Biochemistry; 2018 Jan; 57(3):314-323. PubMed ID: 29210575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in transferable coarse-grained modeling of proteins.
    Kar P; Feig M
    Adv Protein Chem Struct Biol; 2014; 96():143-80. PubMed ID: 25443957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA chain length and stoichiometry govern surface tension and stability of protein-RNA condensates.
    Laghmach R; Alshareedah I; Pham M; Raju M; Banerjee PR; Potoyan DA
    iScience; 2022 Apr; 25(4):104105. PubMed ID: 35378855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions.
    Krainer G; Welsh TJ; Joseph JA; Espinosa JR; Wittmann S; de Csilléry E; Sridhar A; Toprakcioglu Z; Gudiškytė G; Czekalska MA; Arter WE; Guillén-Boixet J; Franzmann TM; Qamar S; George-Hyslop PS; Hyman AA; Collepardo-Guevara R; Alberti S; Knowles TPJ
    Nat Commun; 2021 Feb; 12(1):1085. PubMed ID: 33597515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Implications of Intracellular Phase Transitions.
    Holehouse AS; Pappu RV
    Biochemistry; 2018 May; 57(17):2415-2423. PubMed ID: 29323488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.
    Harmon TS; Holehouse AS; Rosen MK; Pappu RV
    Elife; 2017 Nov; 6():. PubMed ID: 29091028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy.
    Joseph JA; Reinhardt A; Aguirre A; Chew PY; Russell KO; Espinosa JR; Garaizar A; Collepardo-Guevara R
    Nat Comput Sci; 2021 Nov; 1(11):732-743. PubMed ID: 35795820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale analysis of DNA phase separation: from atomistic to mesoscale level.
    Sun T; Mirzoev A; Minhas V; Korolev N; Lyubartsev AP; Nordenskiöld L
    Nucleic Acids Res; 2019 Jun; 47(11):5550-5562. PubMed ID: 31106383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.