These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33496376)
1. Reduction Mechanism of Transition Metal Oxide Particles in Thermally Induced Nanobubbles during Pulsed Laser Melting in Ethanol. Suehara K; Takai R; Ishikawa Y; Koshizaki N; Omura K; Nagata H; Yamauchi Y Chemphyschem; 2021 Apr; 22(7):675-683. PubMed ID: 33496376 [TBL] [Abstract][Full Text] [Related]
2. Behavior of Thermally Induced Nanobubbles during Instantaneous Particle Heating by Pulsed Laser Melting in Liquid. Tabayashi Y; Sakaki S; Koshizaki N; Yamauchi Y; Ishikawa Y Langmuir; 2021 Jun; 37(23):7167-7175. PubMed ID: 34078084 [TBL] [Abstract][Full Text] [Related]
3. Determining the Composite Structure of Au-Fe-Based Submicrometre Spherical Particles Fabricated by Pulsed-Laser Melting in Liquid. Fuse H; Koshizaki N; Ishikawa Y; Swiatkowska-Warkocka Z Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717489 [TBL] [Abstract][Full Text] [Related]
4. Pulse-Width Dependence of the Cooling Effect on Sub-Micrometer ZnO Spherical Particle Formation by Pulsed-Laser Melting in a Liquid. Sakaki S; Ikenoue H; Tsuji T; Ishikawa Y; Koshizaki N Chemphyschem; 2017 May; 18(9):1101-1107. PubMed ID: 28052480 [TBL] [Abstract][Full Text] [Related]
5. Hydrofluoric acid pretreatment effect on the formation of silicon submicrometer particles by pulsed laser melting in liquid and their optical scattering property. Wakatsuki Y; Ishikawa Y; Koshizaki N Nanotechnology; 2020 Feb; 31(9):095601. PubMed ID: 31809268 [TBL] [Abstract][Full Text] [Related]
6. Guided Slow Continuous Suspension Film Flow for Mass Production of Submicrometer Spherical Particles by Pulsed Laser Melting in Liquid. Ishikawa Y; Koshizaki N Sci Rep; 2018 Sep; 8(1):14208. PubMed ID: 30242274 [TBL] [Abstract][Full Text] [Related]
7. Fracture and Embedment Behavior of Brittle Submicrometer Spherical Particles Fabricated by Pulsed Laser Melting in Liquid Using a Scanning Electron Microscope Nanoindenter. Nakamura D; Koshizaki N; Shishido N; Kamiya S; Ishikawa Y Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578517 [TBL] [Abstract][Full Text] [Related]
8. Solvent-particles interactions during composite particles formation by pulsed laser melting of α-Fe Shakeri MS; Polit O; Grabowska-Polanowska B; Pyatenko A; Suchanek K; Dulski M; Gurgul J; Swiatkowska-Warkocka Z Sci Rep; 2022 Jul; 12(1):11950. PubMed ID: 35831334 [TBL] [Abstract][Full Text] [Related]
9. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum. Xu Y; Dibble CJ; Petrik NG; Smith RS; Joly AG; Tonkyn RG; Kay BD; Kimmel GA J Chem Phys; 2016 Apr; 144(16):164201. PubMed ID: 27131543 [TBL] [Abstract][Full Text] [Related]
10. Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles. Landström L; Heszler P J Phys Chem B; 2004 May; 108(20):6216-21. PubMed ID: 18950103 [TBL] [Abstract][Full Text] [Related]
11. Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose. Waag F; Gökce B; Kalapu C; Bendt G; Salamon S; Landers J; Hagemann U; Heidelmann M; Schulz S; Wende H; Hartmann N; Behrens M; Barcikowski S Sci Rep; 2017 Oct; 7(1):13161. PubMed ID: 29030573 [TBL] [Abstract][Full Text] [Related]
12. General bottom-up construction of spherical particles by pulsed laser irradiation of colloidal nanoparticles: a case study on CuO. Wang H; Kawaguchi K; Pyatenko A; Li X; Swiatkowska-Warkocka Z; Katou Y; Koshizaki N Chemistry; 2012 Jan; 18(1):163-9. PubMed ID: 22140012 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer. Inasawa S; Sugiyama M; Noda S; Yamaguchi Y J Phys Chem B; 2006 Feb; 110(7):3114-9. PubMed ID: 16494317 [TBL] [Abstract][Full Text] [Related]
14. Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects. Zhang D; Lau M; Lu S; Barcikowski S; Gökce B Sci Rep; 2017 Jan; 7():40355. PubMed ID: 28084408 [TBL] [Abstract][Full Text] [Related]
15. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles. Katayama T; Setoura K; Werner D; Miyasaka H; Hashimoto S Langmuir; 2014 Aug; 30(31):9504-13. PubMed ID: 25083945 [TBL] [Abstract][Full Text] [Related]
17. Intracellular hyperthermia: Nanobubbles and their biomedical applications. Wen D Int J Hyperthermia; 2009 Nov; 25(7):533-41. PubMed ID: 19848616 [TBL] [Abstract][Full Text] [Related]
18. ns or fs pulsed laser ablation of a bulk InSb target in liquids for nanoparticles synthesis. Semaltianos NG; Hendry E; Chang H; Wears ML; Monteil G; Assoul M; Malkhasyan V; Blondeau-Patissier V; Gauthier-Manuel B; Moutarlier V J Colloid Interface Sci; 2016 May; 469():57-62. PubMed ID: 26866890 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of nanobubble generation around overheated nanoparticles. Lombard J; Biben T; Merabia S Phys Rev Lett; 2014 Mar; 112(10):105701. PubMed ID: 24679307 [TBL] [Abstract][Full Text] [Related]
20. Generation and Evolution of Nanobubbles on Heated Nanoparticles: A Molecular Dynamics Study. Pu JH; Sun J; Wang W; Wang HS Langmuir; 2020 Mar; 36(9):2375-2382. PubMed ID: 32011891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]