These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33496595)

  • 1. Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane by Galvanic Replacement between Two Immiscible Metals: Case Study of Nickel/Silver Nanoparticle Synthesis.
    Gaidhani NG; Patra S; Chandwadkar HS; Sen D; Majumder C; Ramagiri SV; Bellare JR
    Langmuir; 2021 Feb; 37(5):1637-1650. PubMed ID: 33496595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the mechanism of nucleation and growth of silver nanoparticles in a polymer membrane under continuous precursor supply: tuning of multiple to single nucleation pathway.
    Naik AN; Patra S; Sen D; Goswami A
    Phys Chem Chem Phys; 2019 Feb; 21(8):4193-4199. PubMed ID: 30734801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enriching Silver Nanocrystals with a Second Noble Metal.
    Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D
    Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches.
    Cheng H; Wang C; Qin D; Xia Y
    Acc Chem Res; 2023 Apr; 56(7):900-909. PubMed ID: 36966410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox decomposition of silver citrate complex in nanoscale confinement: an unusual mechanism of formation and growth of silver nanoparticles.
    Patra S; Pandey AK; Sen D; Ramagiri SV; Bellare JR; Mazumder S; Goswami A
    Langmuir; 2014 Mar; 30(9):2460-9. PubMed ID: 24533743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of CuTCNQ/Au microrods by galvanic replacement of semiconducting phase I CuTCNQ with KAuBr4 in aqueous medium.
    Pearson A; O'Mullane AP; Bhargava SK; Bansal V
    Inorg Chem; 2012 Aug; 51(16):8791-801. PubMed ID: 22853734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of small Ni-core-Au-shell catalytic nanoparticles on TiO
    Reboul J; Li ZY; Yuan J; Nakatsuka K; Saito M; Mori K; Yamashita H; Xia Y; Louis C
    Nanoscale Adv; 2021 Feb; 3(3):823-835. PubMed ID: 36133853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselective Deposition of Metals on Seeds within a Polymer Matrix.
    Huang L; Shen B; Lin H; Shen J; Jibril L; Zheng CY; Wolverton C; Mirkin CA
    J Am Chem Soc; 2022 Mar; 144(11):4792-4798. PubMed ID: 35258289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles.
    Sutter E; Jungjohann K; Bliznakov S; Courty A; Maisonhaute E; Tenney S; Sutter P
    Nat Commun; 2014 Sep; 5():4946. PubMed ID: 25208691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions.
    Chee SW; Tan SF; Baraissov Z; Bosman M; Mirsaidov U
    Nat Commun; 2017 Oct; 8(1):1224. PubMed ID: 29089478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and Experimental Evaluation of the Reduction Potential of Straight-Chain Alcohols for the Designed Synthesis of Bimetallic Nanostructures.
    Ishijima M; Matsumoto T; Cuya Huaman JL; Shinoda K; Uchikoshi M; Matsuo K; Suzuki K; Miyamura H; Balachandran J
    Inorg Chem; 2021 Jul; 60(13):9432-9441. PubMed ID: 33847487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of electrically conductive nickel-silver bimetallic particles via polydopamine coating.
    Kim SY; Kim J; Choe J; Byun YC; Seo JH; Kim DH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7600-9. PubMed ID: 24245300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic Replacement of the Liquid Metal Galinstan.
    Hoshyargar F; Crawford J; O'Mullane AP
    J Am Chem Soc; 2017 Feb; 139(4):1464-1471. PubMed ID: 27626629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.
    Tan SF; Lin G; Bosman M; Mirsaidov U; Nijhuis CA
    ACS Nano; 2016 Aug; 10(8):7689-95. PubMed ID: 27389989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Reactions in a Single Zero-Valent Iron Nanoparticle.
    Ling L; Huang X; Li M; Zhang WX
    Environ Sci Technol; 2017 Dec; 51(24):14293-14300. PubMed ID: 29149555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of silver core - silica shell composite nanoparticles.
    Niitsoo O; Couzis A
    J Colloid Interface Sci; 2011 Feb; 354(2):887-90. PubMed ID: 21145562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and galvanic replacement of silver nanocubes in organic media.
    Polavarapu L; Liz-Marzán LM
    Nanoscale; 2013 May; 5(10):4355-61. PubMed ID: 23571840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.