These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

804 related articles for article (PubMed ID: 33496829)

  • 1. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening.
    Liu H; Chen Y; Zhang Y; Wang L; Luo R; Wu H; Wu C; Zhang H; Tan W; Yin H; Wang D
    Eur Radiol; 2021 Aug; 31(8):5902-5912. PubMed ID: 33496829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning performance for detection and classification of microcalcifications on mammography.
    Pesapane F; Trentin C; Ferrari F; Signorelli G; Tantrige P; Montesano M; Cicala C; Virgoli R; D'Acquisto S; Nicosia L; Origgi D; Cassano E
    Eur Radiol Exp; 2023 Nov; 7(1):69. PubMed ID: 37934382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions.
    Yin HL; Jiang Y; Xu Z; Jia HH; Lin GW
    J Cancer Res Clin Oncol; 2023 Jun; 149(6):2575-2584. PubMed ID: 35771263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning combining mammography and ultrasound images to predict the malignancy of BI-RADS US 4A lesions in women with dense breasts: a diagnostic study.
    Yang Y; Zhong Y; Li J; Feng J; Gong C; Yu Y; Hu Y; Gu R; Wang H; Liu F; Mei J; Jiang X; Wang J; Yao Q; Wu W; Liu Q; Yao H
    Int J Surg; 2024 May; 110(5):2604-2613. PubMed ID: 38348891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-based deep learning in the establishment of a breast lesion risk stratification system: a multicenter study.
    Gu Y; Xu W; Liu T; An X; Tian J; Ran H; Ren W; Chang C; Yuan J; Kang C; Deng Y; Wang H; Luo B; Guo S; Zhou Q; Xue E; Zhan W; Zhou Q; Li J; Zhou P; Chen M; Gu Y; Chen W; Zhang Y; Li J; Cong L; Zhu L; Wang H; Jiang Y
    Eur Radiol; 2023 Apr; 33(4):2954-2964. PubMed ID: 36418619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI for the assessment of malignancy in BI-RADS 4 mammographic microcalcifications.
    Bennani-Baiti B; Dietzel M; Baltzer PA
    PLoS One; 2017; 12(11):e0188679. PubMed ID: 29190656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scoring System to Stratify Malignancy Risks for Mammographic Microcalcifications Based on Breast Imaging Reporting and Data System 5th Edition Descriptors.
    Youk JH; Gweon HM; Son EJ; Eun NL; Choi EJ; Kim JA
    Korean J Radiol; 2019 Dec; 20(12):1646-1652. PubMed ID: 31854152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and diagnosis of automated breast ultrasound in patients with BI-RADS category 4 microcalcifications: a retrospective study.
    Yu LF; Dai CC; Zhu LX; Xu XJ; Yan HJ; Jiang CX; Bao LY
    BMC Med Imaging; 2024 May; 24(1):126. PubMed ID: 38807064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonmasslike enhancement at breast MR imaging: the added value of mammography and US for lesion categorization.
    Thomassin-Naggara I; Trop I; Chopier J; David J; Lalonde L; Darai E; Rouzier R; Uzan S
    Radiology; 2011 Oct; 261(1):69-79. PubMed ID: 21771958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of diagnostic performances in the evaluation of breast microcalcifications: synthetic mammography versus full-field digital mammography.
    Kilic P; Sendur HN; Gultekin S; Gultekin II; Cindil E; Cerit M
    Ir J Med Sci; 2022 Aug; 191(4):1891-1897. PubMed ID: 34472041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scoring system based on BI-RADS lexicon to predict probability of malignancy in suspicious microcalcifications.
    Youk JH; Son EJ; Kim JA; Moon HJ; Kim MJ; Choi CH; Kim EK
    Ann Surg Oncol; 2012 May; 19(5):1491-8. PubMed ID: 22173328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of 2D Synthetic Mammography Versus Digital Mammography in the Detection of Microcalcifications at Screening.
    Dodelzon K; Simon K; Dou E; Levy AD; Michaels AY; Askin G; Katzen JT
    AJR Am J Roentgenol; 2020 Jun; 214(6):1436-1444. PubMed ID: 32255687
    [No Abstract]   [Full Text] [Related]  

  • 13. A comparative study of the diagnostic value of contrast-enhanced breast MR imaging and mammography on patients with BI-RADS 3-5 microcalcifications.
    Li E; Li J; Song Y; Xue M; Zhou C
    PLoS One; 2014; 9(11):e111217. PubMed ID: 25365327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Value of contrast-enhanced mammography combined with the Kaiser score for clinical decision-making regarding tomosynthesis BI-RADS 4A lesions.
    Rong X; Kang Y; Xue J; Han P; Li Z; Yang G; Shi G
    Eur Radiol; 2022 Nov; 32(11):7439-7447. PubMed ID: 35639141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast-enhanced MR imaging in patients with BI-RADS 3-5 microcalcifications.
    Cilotti A; Iacconi C; Marini C; Moretti M; Mazzotta D; Traino C; Naccarato AG; Piagneri V; Giaconi C; Bevilacqua G; Bartolozzi C
    Radiol Med; 2007 Mar; 112(2):272-86. PubMed ID: 17361370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the potential of breast MRI: a game changer for BI-RADS 4A microcalcifications.
    Li S; Lin Y; Liu G; Shao Z; Yang Y
    Breast Cancer Res Treat; 2024 Jul; 206(2):425-435. PubMed ID: 38664289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
    Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S
    J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the role of dynamic contrast-enhanced MR imaging for patients with BI-RADS 3-4 microcalcifications.
    Jiang Y; Lou J; Wang S; Zhao Y; Wang C; Wang D
    PLoS One; 2014; 9(6):e99669. PubMed ID: 24927476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The added value of an artificial intelligence system in assisting radiologists on indeterminate BI-RADS 0 mammograms.
    Yi C; Tang Y; Ouyang R; Zhang Y; Cao Z; Yang Z; Wu S; Han M; Xiao J; Chang P; Ma J
    Eur Radiol; 2022 Mar; 32(3):1528-1537. PubMed ID: 34528107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-reader Variability in the Use of BI-RADS Descriptors for Suspicious Findings on Diagnostic Mammography: A Multi-institution Study of 10 Academic Radiologists.
    Lee AY; Wisner DJ; Aminololama-Shakeri S; Arasu VA; Feig SA; Hargreaves J; Ojeda-Fournier H; Bassett LW; Wells CJ; De Guzman J; Flowers CI; Campbell JE; Elson SL; Retallack H; Joe BN
    Acad Radiol; 2017 Jan; 24(1):60-66. PubMed ID: 27793579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.