These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33496832)

  • 1. Breeding for sustainable oilseed crop yield and quality in a changing climate.
    Attia Z; Pogoda CS; Reinert S; Kane NC; Hulke BS
    Theor Appl Genet; 2021 Jun; 134(6):1817-1827. PubMed ID: 33496832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils.
    Msanne J; Kim H; Cahoon EB
    Biochimie; 2020 Nov; 178():4-14. PubMed ID: 32979430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of modelling tools to assess climate change impacts on smallholder oil seed yields in South Africa.
    Kephe PN; Mkuhlani S; Rusere F; Chemura A
    PLoS One; 2024; 19(5):e0301254. PubMed ID: 38713689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between genetics and environment shape Camelina seed oil composition.
    Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM
    BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview.
    Ahmad M; Waraich EA; Skalicky M; Hussain S; Zulfiqar U; Anjum MZ; Habib Ur Rahman M; Brestic M; Ratnasekera D; Lamilla-Tamayo L; Al-Ashkar I; El Sabagh A
    Front Plant Sci; 2021; 12():767150. PubMed ID: 34975951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity.
    Cooper M; Voss-Fels KP; Messina CD; Tang T; Hammer GL
    Theor Appl Genet; 2021 Jun; 134(6):1625-1644. PubMed ID: 33738512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active and adaptive plasticity in a changing climate.
    Brooker R; Brown LK; George TS; Pakeman RJ; Palmer S; Ramsay L; Schöb C; Schurch N; Wilkinson MJ
    Trends Plant Sci; 2022 Jul; 27(7):717-728. PubMed ID: 35282996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Potential of Genome Editing for Improving Seed Oil Content and Fatty Acid Composition in Oilseed Crops.
    Subedi U; Jayawardhane KN; Pan X; Ozga J; Chen G; Foroud NA; Singer SD
    Lipids; 2020 Sep; 55(5):495-512. PubMed ID: 32856292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring natural selection to guide breeding for agriculture.
    Henry RJ; Nevo E
    Plant Biotechnol J; 2014 Aug; 12(6):655-62. PubMed ID: 24975385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil.
    Wilson RF
    J Oleo Sci; 2012; 61(7):357-67. PubMed ID: 22790166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breeding crops for climate resilience.
    Langridge P; Braun H; Hulke B; Ober E; Prasanna BM
    Theor Appl Genet; 2021 Jun; 134(6):1607-1611. PubMed ID: 34046700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.
    Batley J; Edwards D
    Curr Opin Plant Biol; 2016 Apr; 30():78-81. PubMed ID: 26926905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed germination and vigor: ensuring crop sustainability in a changing climate.
    Reed RC; Bradford KJ; Khanday I
    Heredity (Edinb); 2022 Jun; 128(6):450-459. PubMed ID: 35013549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic and Genome Editing Approaches for Modifying Plant Oils.
    Wayne LL; Gachotte DJ; Walsh TA
    Methods Mol Biol; 2019; 1864():367-394. PubMed ID: 30415347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop adaptation to climate change as a consequence of long-term breeding.
    Snowdon RJ; Wittkop B; Chen TW; Stahl A
    Theor Appl Genet; 2021 Jun; 134(6):1613-1623. PubMed ID: 33221941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?
    Varshney RK; Bansal KC; Aggarwal PK; Datta SK; Craufurd PQ
    Trends Plant Sci; 2011 Jul; 16(7):363-71. PubMed ID: 21497543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas fluorescens LBUM677 differentially increases plant biomass, total oil content and lipid composition in three oilseed crops.
    Jiménez JA; Novinscak A; Filion M
    J Appl Microbiol; 2020 Apr; 128(4):1119-1127. PubMed ID: 31793115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.