These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33496975)

  • 1. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction.
    Mehta R; Sonavane M; Migaud ME; Gassman NR
    Environ Mol Mutagen; 2021 Mar; 62(3):185-202. PubMed ID: 33496975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroxyacetone Exposure Alters NAD(P)H and Induces Mitochondrial Stress and Autophagy in HEK293T Cells.
    Smith KR; Hayat F; Andrews JF; Migaud ME; Gassman NR
    Chem Res Toxicol; 2019 Aug; 32(8):1722-1731. PubMed ID: 31328504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tipping point in dihydroxyacetone exposure: mitochondrial stress and metabolic reprogramming alter survival in rat cardiomyocytes H9c2 cells.
    Hernandez A; Belfleur L; Migaud M; Gassman NR
    Chem Biol Interact; 2024 May; 394():110991. PubMed ID: 38582340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydroxyacetone induces G2/M arrest and apoptotic cell death in A375P melanoma cells.
    Smith KR; Granberry M; Tan MCB; Daniel CL; Gassman NR
    Environ Toxicol; 2018 Mar; 33(3):333-342. PubMed ID: 29193605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dihydroxyacetone suppresses mTOR nutrient signaling and induces mitochondrial stress in liver cells.
    Hernandez A; Sonavane M; Smith KR; Seiger J; Migaud ME; Gassman NR
    PLoS One; 2022; 17(12):e0278516. PubMed ID: 36472985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase.
    Jain VK; Tear CJ; Lim CY
    Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sunless tanning agent dihydroxyacetone induces stress response gene expression and signaling in cultured human keratinocytes and reconstructed epidermis.
    Perer J; Jandova J; Fimbres J; Jennings EQ; Galligan JJ; Hua A; Wondrak GT
    Redox Biol; 2020 Sep; 36():101594. PubMed ID: 32506039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and safety of topical dihydroxyacetone in sunless tanning products: A review.
    Owji S; Teklehaimanot F; Maghfour J; Lim HW
    Photodermatol Photoimmunol Photomed; 2023 Nov; 39(6):567-572. PubMed ID: 37697919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the respiratory toxicity of dihydroxyacetone using an in vitro human airway epithelial tissue model.
    Wang Y; Wu Q; Muskhelishvili L; Davis K; Bryant M; Cao X
    Toxicol In Vitro; 2019 Sep; 59():78-86. PubMed ID: 30959092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute exposure to dihydroxyacetone promotes genotoxicity and chromosomal instability in lung, cardiac, and liver cell models.
    Hernandez A; Hedlich-Dwyer J; Hussain S; Levi H; Sonavane M; Suzuki T; Kamiya H; Gassman NR
    Toxicol Sci; 2024 Sep; 201(1):85-102. PubMed ID: 38867704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In search of the perfect tan: Chemical activity, biological effects, business considerations, and consumer implications of dihydroxyacetone sunless tanning products.
    Turner J; O'Loughlin DA; Green P; McDonald TO; Hamill KJ
    J Cosmet Dermatol; 2023 Jan; 22(1):79-88. PubMed ID: 35384270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes.
    Petersen AB; Wulf HC; Gniadecki R; Gajkowska B
    Mutat Res; 2004 Jun; 560(2):173-86. PubMed ID: 15157655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution Chemistry of Dihydroxyacetone and Synthesis of Monomeric Dihydroxyacetone.
    Belfleur L; Sonavane M; Hernandez A; Gassman NR; Migaud ME
    Chem Res Toxicol; 2022 Apr; 35(4):616-625. PubMed ID: 35324152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxic, genotoxic, and toxicogenomic effects of dihydroxyacetone in human primary keratinocytes.
    Striz A; DePina A; Jones R; Gao X; Yourick J
    Cutan Ocul Toxicol; 2021 Sep; 40(3):232-240. PubMed ID: 34008457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.
    Molin M; Blomberg A
    Mol Microbiol; 2006 May; 60(4):925-38. PubMed ID: 16677304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing sunless tanning with dihydroxyacetone.
    Nguyen BC; Kochevar IE
    Br J Dermatol; 2003 Aug; 149(2):332-40. PubMed ID: 12932240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydroxyacetone: A Review.
    Braunberger TL; Nahhas AF; Katz LM; Sadrieh N; Lim HW
    J Drugs Dermatol; 2018 Apr; 17(4):387-391. PubMed ID: 29601614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae.
    Wei D; Wang M; Jiang B; Shi J; Hao J
    J Biotechnol; 2014 May; 177():13-9. PubMed ID: 24583287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role.
    Weinhouse H; Benziman M
    J Bacteriol; 1976 Aug; 127(2):747-54. PubMed ID: 956117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli.
    Peiro C; Millard P; de Simone A; Cahoreau E; Peyriga L; Enjalbert B; Heux S
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.