These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33497029)

  • 1. Synthesis of [4S-
    Rowbotham JS; Hardy AP; Reeve HA; Vincent KA
    J Labelled Comp Radiopharm; 2021 Apr; 64(4):181-186. PubMed ID: 33497029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques.
    Rowbotham JS; Ramirez MA; Lenz O; Reeve HA; Vincent KA
    Nat Commun; 2020 Mar; 11(1):1454. PubMed ID: 32193396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.
    Velasco-Lozano S; Benítez-Mateos AI; López-Gallego F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):771-775. PubMed ID: 28000978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic hydrogenations on carbon supports.
    Thompson LA; Rowbotham JS; Reeve HA; Zor C; Grobert N; Vincent KA
    Methods Enzymol; 2020; 630():303-325. PubMed ID: 31931991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis of [4R-2H]NAD (P)H and [4S-2H]NAD(P)H and determination of the stereospecificity of 7 alpha- and 12 alpha hydroxysteroid dehydrogenase.
    Ottolina G; Riva S; Carrea G; Danieli B; Buckmann AF
    Biochim Biophys Acta; 1989 Oct; 998(2):173-8. PubMed ID: 2675982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of Cofactors in Crude Enzyme Hydrogels as Co-immobilized Heterogeneous Biocatalysts for Continuous-Flow Asymmetric Reduction of Ketones.
    Chen Q; Wang Y; Luo G
    ChemSusChem; 2023 Feb; 16(3):e202201654. PubMed ID: 36269055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Particle Kinetics of Immobilized Enzymes by Harnessing the Autofluorescence of Co-Immobilized Cofactors.
    Benítez-Mateos AI
    Methods Mol Biol; 2020; 2100():309-317. PubMed ID: 31939132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Chemo-, Bio-, and Electrocatalysis for Atom-Efficient Deuteration of Cofactors in Heavy Water.
    Rowbotham JS; Reeve HA; Vincent KA
    ACS Catal; 2021 Mar; 11(5):2596-2604. PubMed ID: 33842020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H
    Zor C; Reeve HA; Quinson J; Thompson LA; Lonsdale TH; Dillon F; Grobert N; Vincent KA
    Chem Commun (Camb); 2017 Aug; 53(71):9839-9841. PubMed ID: 28795176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 14. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of the Enzyme-Carrier Interface to Overcome the O
    Benítez-Mateos AI; Huber C; Nidetzky B; Bolivar JM; López-Gallego F
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56027-56038. PubMed ID: 33275418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.
    Liu W; Zhang S; Wang P
    J Biotechnol; 2009 Jan; 139(1):102-7. PubMed ID: 19000722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-Modified Particles for Selective Biocatalytic Hydrogenation by Hydrogen-Driven NADH Recycling.
    Reeve HA; Lauterbach L; Lenz O; Vincent KA
    ChemCatChem; 2015 Nov; 7(21):3480-3487. PubMed ID: 26613009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme.
    Rocha-Martín J; Vega D; Bolivar JM; Godoy CA; Hidalgo A; Berenguer J; Guisán JM; López-Gallego F
    BMC Biotechnol; 2011 Nov; 11():101. PubMed ID: 22053761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties.
    Reeve HA; Lauterbach L; Ash PA; Lenz O; Vincent KA
    Chem Commun (Camb); 2012 Feb; 48(10):1589-91. PubMed ID: 21986817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.