These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33497339)

  • 1. EPGAT: Gene Essentiality Prediction With Graph Attention Networks.
    Schapke J; Tavares A; Recamonde-Mendoza M
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1615-1626. PubMed ID: 33497339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Bingo'-a large language model- and graph neural network-based workflow for the prediction of essential genes from protein data.
    Ma J; Song J; Young ND; Chang BCH; Korhonen PK; Campos TL; Liu H; Gasser RB
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38152979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GNNGL-PPI: multi-category prediction of protein-protein interactions using graph neural networks based on global graphs and local subgraphs.
    Zeng X; Meng FF; Wen ML; Li SJ; Li Y
    BMC Genomics; 2024 May; 25(1):406. PubMed ID: 38724906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network.
    Xiao Z; Deng Y
    PLoS One; 2020; 15(9):e0238915. PubMed ID: 32970681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFAGO: cross-fusion of network and attributes based on attention mechanism for protein function prediction.
    Wu Z; Guo M; Jin X; Chen J; Liu B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36883697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurately modeling biased random walks on weighted networks using node2vec.
    Liu R; Hirn M; Krishnan A
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36688699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Survey on Graph Neural Networks.
    Wu Z; Pan S; Chen F; Long G; Zhang C; Yu PS
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):4-24. PubMed ID: 32217482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks.
    La Rosa M; Fiannaca A; La Paglia L; Urso A
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hierarchical Graph Neural Network Framework for Predicting Protein-Protein Interaction Modulators With Functional Group Information and Hypergraph Structure.
    Zhang Z; Zhao L; Wang J; Wang C
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4295-4305. PubMed ID: 38564358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological feature generation for link prediction in biological networks.
    Temiz M; Bakir-Gungor B; Güner Şahan P; Coskun M
    PeerJ; 2023; 11():e15313. PubMed ID: 37187525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification.
    Dai W; Chang Q; Peng W; Zhong J; Li Y
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32023848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EdgeNets: Edge Varying Graph Neural Networks.
    Isufi E; Gama F; Ribeiro A
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7457-7473. PubMed ID: 34516371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks.
    Hasibi R; Michoel T
    BMC Bioinformatics; 2021 Oct; 22(1):525. PubMed ID: 34706640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph Transformer Networks: Learning meta-path graphs to improve GNNs.
    Yun S; Jeong M; Yoo S; Lee S; Yi SS; Kim R; Kang J; Kim HJ
    Neural Netw; 2022 Sep; 153():104-119. PubMed ID: 35716619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.