These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33497380)

  • 1. Dysregulation of excitatory neural firing replicates physiological and functional changes in aging visual cortex.
    Talyansky S; Brinkman BAW
    PLoS Comput Biol; 2021 Jan; 17(1):e1008620. PubMed ID: 33497380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.
    Taylor MM; Contreras D; Destexhe A; Frégnac Y; Antolik J
    J Neurosci; 2021 Sep; 41(37):7797-7812. PubMed ID: 34321313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.
    Moldakarimov S; Bazhenov M; Sejnowski TJ
    PLoS Comput Biol; 2014 Aug; 10(8):e1003770. PubMed ID: 25121603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.
    Eguchi A; Neymotin SA; Stringer SM
    Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields.
    Zylberberg J; Murphy JT; DeWeese MR
    PLoS Comput Biol; 2011 Oct; 7(10):e1002250. PubMed ID: 22046123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
    Tan AY; Brown BD; Scholl B; Mohanty D; Priebe NJ
    J Neurosci; 2011 Aug; 31(34):12339-50. PubMed ID: 21865476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
    King PD; Zylberberg J; DeWeese MR
    J Neurosci; 2013 Mar; 33(13):5475-85. PubMed ID: 23536063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex.
    Gonzalo Cogno S; Mato G
    Front Neural Circuits; 2015; 9():42. PubMed ID: 26347615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric synaptic depression in cortical networks.
    Chelaru MI; Dragoi V
    Cereb Cortex; 2008 Apr; 18(4):771-88. PubMed ID: 17693394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation without Plasticity.
    Quiroga MDM; Morris AP; Krekelberg B
    Cell Rep; 2016 Sep; 17(1):58-68. PubMed ID: 27681421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hebbian plasticity and homeostasis in a model of hypercolumn of the visual cortex.
    Pool RR; Mato G
    Neural Comput; 2010 Jul; 22(7):1837-59. PubMed ID: 20235825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Aging affects on the response irregularity of cells in different visual areas of cats].
    Zhou B; Yao Z; Liang Z; Wang Z; Yuan N; Liu Z; Zhou Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):229-33. PubMed ID: 23858738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing.
    Lumer ED; Edelman GM; Tononi G
    Cereb Cortex; 1997; 7(3):228-36. PubMed ID: 9143443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus dependence of local field potential spectra: experiment versus theory.
    Barbieri F; Mazzoni A; Logothetis NK; Panzeri S; Brunel N
    J Neurosci; 2014 Oct; 34(44):14589-605. PubMed ID: 25355213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional modulation of firing rate and synchrony in a model cortical network.
    Buia C; Tiesinga P
    J Comput Neurosci; 2006 Jun; 20(3):247-64. PubMed ID: 16683206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained brain volume in an efficient coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices.
    Alreja A; Nemenman I; Rozell CJ
    PLoS Comput Biol; 2022 Jan; 18(1):e1009642. PubMed ID: 35061666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex.
    Huertas MA; Hussain Shuler MG; Shouval HZ
    J Neurosci; 2015 Sep; 35(37):12659-72. PubMed ID: 26377457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.