These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33497399)

  • 1. Expression analysis of porcine miR-33a/b in liver, adipose tissue and muscle and its potential role in fatty acid metabolism.
    Criado-Mesas L; Ballester M; Crespo-Piazuelo D; Passols M; Castelló A; Sánchez A; Folch JM
    PLoS One; 2021; 16(1):e0245858. PubMed ID: 33497399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.
    Rayner KJ; Esau CC; Hussain FN; McDaniel AL; Marshall SM; van Gils JM; Ray TD; Sheedy FJ; Goedeke L; Liu X; Khatsenko OG; Kaimal V; Lees CJ; Fernandez-Hernando C; Fisher EA; Temel RE; Moore KJ
    Nature; 2011 Oct; 478(7369):404-7. PubMed ID: 22012398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-33b downregulates the differentiation and development of porcine preadipocytes.
    Taniguchi M; Nakajima I; Chikuni K; Kojima M; Awata T; Mikawa S
    Mol Biol Rep; 2014 Feb; 41(2):1081-90. PubMed ID: 24398549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.
    Dávalos A; Goedeke L; Smibert P; Ramírez CM; Warrier NP; Andreo U; Cirera-Salinas D; Rayner K; Suresh U; Pastor-Pareja JC; Esplugues E; Fisher EA; Penalva LO; Moore KJ; Suárez Y; Lai EC; Fernández-Hernando C
    Proc Natl Acad Sci U S A; 2011 May; 108(22):9232-7. PubMed ID: 21576456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Differential Roles of MicroRNA-33a and -33b During Atherosclerosis Progression With Genetically Modified Mice.
    Koyama S; Horie T; Nishino T; Baba O; Sowa N; Miyasaka Y; Kuwabara Y; Nakao T; Nishiga M; Nishi H; Nakashima Y; Nakazeki F; Ide Y; Kimura M; Tsuji S; Ruiz Rodriguez R; Xu S; Yamasaki T; Otani C; Watanabe T; Nakamura T; Hasegawa K; Kimura T; Ono K
    J Am Heart Assoc; 2019 Jul; 8(13):e012609. PubMed ID: 31242815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age.
    Martino F; Carlomosti F; Avitabile D; Persico L; Picozza M; Barillà F; Arca M; Montali A; Martino E; Zanoni C; Parrotto S; Magenta A
    Clin Sci (Lond); 2015 Dec; 129(11):963-72. PubMed ID: 26229086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.
    Corominas J; Ramayo-Caldas Y; Puig-Oliveras A; Estellé J; Castelló A; Alves E; Pena RN; Ballester M; Folch JM
    BMC Genomics; 2013 Dec; 14():843. PubMed ID: 24289474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SREBF1/MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo.
    Nishino T; Horie T; Baba O; Sowa N; Hanada R; Kuwabara Y; Nakao T; Nishiga M; Nishi H; Nakashima Y; Nakazeki F; Ide Y; Koyama S; Kimura M; Nagata M; Yoshida K; Takagi Y; Nakamura T; Hasegawa K; Miyamoto S; Kimura T; Ono K
    Arterioscler Thromb Vasc Biol; 2018 Oct; 38(10):2460-2473. PubMed ID: 30354203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression.
    Goedeke L; Vales-Lara FM; Fenstermaker M; Cirera-Salinas D; Chamorro-Jorganes A; Ramírez CM; Mattison JA; de Cabo R; Suárez Y; Fernández-Hernando C
    Mol Cell Biol; 2013 Jun; 33(11):2339-52. PubMed ID: 23547260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation.
    Price NL; Holtrup B; Kwei SL; Wabitsch M; Rodeheffer M; Bianchini L; Suárez Y; Fernández-Hernando C
    Mol Cell Biol; 2016 Feb; 36(7):1180-93. PubMed ID: 26830228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-125a-5p Affects Adipocytes Proliferation, Differentiation and Fatty Acid Composition of Porcine Intramuscular Fat.
    Du J; Xu Y; Zhang P; Zhao X; Gan M; Li Q; Ma J; Tang G; Jiang Y; Wang J; Li X; Zhang S; Zhu L
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29414921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs.
    Ding ST; Lapillonne A; Heird WC; Mersmann HJ
    J Anim Sci; 2003 Feb; 81(2):423-31. PubMed ID: 12643486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.
    Amengual J; Ribot J; Bonet ML; Palou A
    Obesity (Silver Spring); 2008 Mar; 16(3):585-91. PubMed ID: 18239600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations.
    Ding ST; Schinckel AP; Weber TE; Mersmann HJ
    J Anim Sci; 2000 Aug; 78(8):2127-34. PubMed ID: 10947099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TXNIP regulates myocardial fatty acid oxidation via miR-33a signaling.
    Chen J; Young ME; Chatham JC; Crossman DK; Dell'Italia LJ; Shalev A
    Am J Physiol Heart Circ Physiol; 2016 Jul; 311(1):H64-75. PubMed ID: 27199118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects.
    Vega-Badillo J; Gutiérrez-Vidal R; Hernández-Pérez HA; Villamil-Ramírez H; León-Mimila P; Sánchez-Muñoz F; Morán-Ramos S; Larrieta-Carrasco E; Fernández-Silva I; Méndez-Sánchez N; Tovar AR; Campos-Pérez F; Villarreal-Molina T; Hernández-Pando R; Aguilar-Salinas CA; Canizales-Quinteros S
    Liver Int; 2016 Sep; 36(9):1383-91. PubMed ID: 26945479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development.
    Wang Q; Qi R; Wang J; Huang W; Wu Y; Huang X; Yang F; Huang J
    Gene; 2017 Jun; 618():49-56. PubMed ID: 28400270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine.
    Ramayo-Caldas Y; Ballester M; Fortes MR; Esteve-Codina A; Castelló A; Noguera JL; Fernández AI; Pérez-Enciso M; Reverter A; Folch JM
    BMC Genomics; 2014 Mar; 15():232. PubMed ID: 24666776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs regulating lipid metabolism in atherogenesis.
    Rayner KJ; Fernandez-Hernando C; Moore KJ
    Thromb Haemost; 2012 Apr; 107(4):642-7. PubMed ID: 22274626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs in metabolism and metabolic diseases.
    Rottiers V; Najafi-Shoushtari SH; Kristo F; Gurumurthy S; Zhong L; Li Y; Cohen DE; Gerszten RE; Bardeesy N; Mostoslavsky R; Näär AM
    Cold Spring Harb Symp Quant Biol; 2011; 76():225-33. PubMed ID: 22156303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.