BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33497434)

  • 1. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies.
    Pang Y; Wang Z; Jhong JH; Lee TY
    Brief Bioinform; 2021 Mar; 22(2):1085-1095. PubMed ID: 33497434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches.
    Pang Y; Yao L; Jhong JH; Wang Z; Lee TY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34279599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting antimicrobial peptides by exploring the mutual information of their sequences.
    Tripathi V; Tripathi P
    J Biomol Struct Dyn; 2020 Oct; 38(17):5037-5043. PubMed ID: 31760879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2.
    Manavalan B; Basith S; Lee G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34595489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2.
    Tonk M; Růžek D; Vilcinskas A
    Viruses; 2021 May; 13(5):. PubMed ID: 34069206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs.
    Zannella C; Chianese A; Palomba L; Marcocci ME; Bellavita R; Merlino F; Grieco P; Folliero V; De Filippis A; Mangoni M; Nencioni L; Franci G; Galdiero M
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest.
    Bhadra P; Yan J; Li J; Fong S; Siu SWI
    Sci Rep; 2018 Jan; 8(1):1697. PubMed ID: 29374199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies.
    Lin Y; Cai Y; Liu J; Lin C; Liu X
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):291. PubMed ID: 31182007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23.
    Chianese A; Zannella C; Monti A; De Filippis A; Doti N; Franci G; Galdiero M
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC.
    Meher PK; Sahu TK; Saini V; Rao AR
    Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model.
    Kurata H; Tsukiyama S; Manavalan B
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35772910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2.
    Liscano Y; Oñate-Garzón J; Ocampo-Ibáñez ID
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2?
    Kurpe SR; Grishin SY; Surin AK; Panfilov AV; Slizen MV; Chowdhury SD; Galzitskaya OV
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population.
    Banerjee A; Ray S; Vorselaars B; Kitson J; Mamalakis M; Weeks S; Baker M; Mackenzie LS
    Int Immunopharmacol; 2020 Sep; 86():106705. PubMed ID: 32652499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.