These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33497572)

  • 1. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints.
    Fassio AV; Shub L; Ponzoni L; McKinley J; O'Meara MJ; Ferreira RS; Keiser MJ; de Melo Minardi RC
    J Chem Inf Model; 2022 Sep; 62(18):4300-4318. PubMed ID: 36102784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network.
    Wang Y; Hu J; Lai J; Li Y; Jin H; Zhang L; Zhang LR; Liu ZM
    J Chem Inf Model; 2020 Jun; 60(6):2754-2765. PubMed ID: 32392062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMBER-Embedding Multiple Molecular Fingerprints for Virtual Screening.
    Mendolia I; Contino S; De Simone G; Perricone U; Pirrone R
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A probabilistic molecular fingerprint for big data settings.
    Probst D; Reymond JL
    J Cheminform; 2018 Dec; 10(1):66. PubMed ID: 30564943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning.
    Stojanović L; Popović M; Tijanić N; Rakočević G; Kalinić M
    J Chem Inf Model; 2020 Oct; 60(10):4629-4639. PubMed ID: 32786700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural product scores and fingerprints extracted from artificial neural networks.
    Menke J; Massa J; Koch O
    Comput Struct Biotechnol J; 2021; 19():4593-4602. PubMed ID: 34584636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions.
    Myint KZ; Wang L; Tong Q; Xie XQ
    Mol Pharm; 2012 Oct; 9(10):2912-23. PubMed ID: 22937990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods.
    Duan J; Dixon SL; Lowrie JF; Sherman W
    J Mol Graph Model; 2010 Sep; 29(2):157-70. PubMed ID: 20579912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-Shot Learning for Low-Data Drug Discovery.
    Vella D; Ebejer JP
    J Chem Inf Model; 2023 Jan; 63(1):27-42. PubMed ID: 36410391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale similarity search profiling of ChEMBL compound data sets.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1831-9. PubMed ID: 21728295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing structural fingerprints using a literature-based similarity benchmark.
    O'Boyle NM; Sayle RA
    J Cheminform; 2016; 8():36. PubMed ID: 27382417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular graph convolutions: moving beyond fingerprints.
    Kearnes S; McCloskey K; Berndl M; Pande V; Riley P
    J Comput Aided Mol Des; 2016 Aug; 30(8):595-608. PubMed ID: 27558503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional Neural Network Model Based on 2D Fingerprint for Bioactivity Prediction.
    Hentabli H; Bengherbia B; Saeed F; Salim N; Nafea I; Toubal A; Nasser M
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacoprint: A Combination of a Pharmacophore Fingerprint and Artificial Intelligence as a Tool for Computer-Aided Drug Design.
    Warszycki D; Struski Ł; Śmieja M; Kafel R; Kurczab R
    J Chem Inf Model; 2021 Oct; 61(10):5054-5065. PubMed ID: 34547888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.